Conservation Genetics

, Volume 13, Issue 1, pp 271–281 | Cite as

Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers

Research Article


The genetic variation and structure of Leucomeris decora, an endangered species in China were investigated. Analyses of three chloroplast DNA (cpDNA) regions (the rpl16 intron, trnQ-5′rps16 intergenic spacer and rpl32-trnL intergenic spacer) and one nuclear gene (GAPDH: encoding glyceraldehyde 3-phosphate dehydrogenase) were conducted on 11 L. decora populations. Low levels of cpDNA genetic diversity were found in this species and within populations, with the identification of 2 haplotypes in a total of 2,745 bp, while the level of genetic diversity revealed by the nuclear gene GAPDH was relatively high, indicating that random losses of genetic polymorphisms from populations may have occurred recently. High levels of genetic differentiation among populations for both markers were detected in L. decora, which could be a consequence of the limited gene flow caused by geographic isolation among populations. An analysis of molecular variance revealed at the nuclear locus suggested the presence of geographic structure within the haplotype distribution possibly due to geographical barriers among populations. The haplotype network and mismatch distribution analyses did not detect the signal for a recent population expansion in L. decora. L. decora may persist in situ during climatic oscillations. Based on the genetic diversity and uniqueness of the populations, conservation strategies are discussed for this endangered species.


Leucomeris decora Chloroplast DNA GAPDH Genetic structure Phylogeography Conservation 



We thank Hong Wang, Guoping Yang, and Shishun Zhou (Xishuangbanna Tropical Botanical Garden) and Qitai Zhang for their assistance with field sampling. This work was funded by the National Basic Research Program of China (973 Program: 2007CB411600).


  1. Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol Ecol 12:299–313PubMedCrossRefGoogle Scholar
  2. Aguilar-Melendez A, Morrell PL, Roose ML, Kim S-C (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am J Bot 96:1190–1202PubMedCrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Axelrod DI, Al Shehbaz I, Raven PH (1996) Floristic characteristics and the modern flora of China. In: Zhang A, Wu S (eds) History of the modern flora of China. Springer, New York, pp 43–55Google Scholar
  5. Bain JF, Golden JL (2003) Phylogeographic relationships within Packera sanguisorboides (Asteraceae), a narrow endemic species that straddles a major biogeographic boundary. Am J Bot 90:1087–1094PubMedCrossRefGoogle Scholar
  6. Banu S, Bhagwat R, Kadoo N, Lagu M, Gupta V (2010) Understanding the genetic structure of Symplocos laurina Wall. Populations using nuclear gene markers. Genetica 138:197–210PubMedCrossRefGoogle Scholar
  7. Chen KM, Abbott RJ, Milne RI, Tian XM, Liu JQ (2008) Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Mol Ecol 17:4276–4288PubMedCrossRefGoogle Scholar
  8. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  9. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  10. Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664PubMedCrossRefGoogle Scholar
  11. Cruzan MB, Templeton AR (2000) Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends Ecol Evol 15:491–496PubMedCrossRefGoogle Scholar
  12. Doyle J (1991) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, BerlinGoogle Scholar
  13. Echt CS, Deverno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316CrossRefGoogle Scholar
  14. Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C (2007) Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol 16:3902–3925PubMedCrossRefGoogle Scholar
  15. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  16. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  18. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  19. Fu LG, Jin JM (1992) The red book of Chinese plants: rare and endangered plants. Science Press, BeijingGoogle Scholar
  20. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  21. Funk VA, Susanna A, Steussy TF, Bayer RJ (2009) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, ViennaGoogle Scholar
  22. Godt MJW, Johnson BR, Hamrick JL (1996) Genetic diversity and population size in four rare Southern Appalachian plant species. Conserv Biol 10:796–805CrossRefGoogle Scholar
  23. Gong X, Luan SS, Hung KH, Hwang CC, Lin CJ, Chiang YC, Chiang TY (2011) Population structure of Nouelia insignis (Asteraceae), an endangered species in southwestern China, based on chloroplast DNA sequences: recent demographic shrinking. J Plant Res 124:221–230PubMedCrossRefGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  25. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467PubMedCrossRefGoogle Scholar
  26. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, SunderlandGoogle Scholar
  27. Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in East Asia. Nature 413:129–130PubMedCrossRefGoogle Scholar
  28. Hedrick PW, Miller PS (1992) Conservation genetics: techniques and fundamentals. Ecol Appl 2:30–46CrossRefGoogle Scholar
  29. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195CrossRefGoogle Scholar
  30. Huang JC, Wang WK, Peng CI, Chiang TY (2005) Phylogeography and conservation genetics of Hygrophila pogonocalyx (Acanthaceae) based on atpB-rbcL noncoding spacer cpDNA. J Plant Res 118:1–11PubMedCrossRefGoogle Scholar
  31. Hwang SY, Lin TP, Ma CS, Lin CL, Chung JD, Yang JC (2003) Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation. Mol Ecol 12:2689–2695PubMedCrossRefGoogle Scholar
  32. Ikeda H, Senni K, Fujii N, Setoguchi H (2008) Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Cardamine nipponica Franch. et Savat. (Brassicaceae). Mol Ecol 17:3178–3188PubMedCrossRefGoogle Scholar
  33. Ikuyo S, Noriaki M (2009) Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): the spatial configuration of wetlands shapes genetic diversity. Divers Distrib 15:917–927CrossRefGoogle Scholar
  34. Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612PubMedCrossRefGoogle Scholar
  35. Johansson US, Ericson PGP (2005) A re-evaluation of basal phylogenetic relationships within trogons (Aves: Trogonidae) based on nuclear DNA sequences. J Zool Syst Evol Res 43:166–173CrossRefGoogle Scholar
  36. Jones J, Gibson J (2011) Population genetic diversity and structure within and among disjunct populations of Alnus maritima (seaside alder) using microsatellites. Conserv Genet 12:1003–1013CrossRefGoogle Scholar
  37. Léotard G, Duputi A, Kjellberg F, Douzery EJP, Debain C, de Granville J-J, McKey D (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol 53:329–334PubMedCrossRefGoogle Scholar
  38. Li WY (1998) Vegetation and climate in the Quaternary in China. Science Press, BeijingGoogle Scholar
  39. Li EX, Yi S, Qiu YX, Guo JT, Comes HP, Fu CX (2008) Phylogeography of two East Asian species in Croomia (Stemonaceae) inferred from chloroplast DNA and ISSR fingerprinting variation. Mol Phylogenet Evol 49:702–714PubMedCrossRefGoogle Scholar
  40. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  41. McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202PubMedCrossRefGoogle Scholar
  42. Molins A, Mayol M, Rosselló JA (2009) Phylogeographical structure in the coastal species Senecio rodriguezii (Asteraceae), a narrowly distributed endemic Mediterranean plant. J Biogeogr 36:1372–1383CrossRefGoogle Scholar
  43. Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726CrossRefGoogle Scholar
  44. Mousadik AE, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5:547–555PubMedCrossRefGoogle Scholar
  45. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  46. Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105:205–217Google Scholar
  47. Novaes RML, Filho JPDL, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 19:985–998PubMedCrossRefGoogle Scholar
  48. Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911PubMedCrossRefGoogle Scholar
  49. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedCrossRefGoogle Scholar
  50. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782PubMedCrossRefGoogle Scholar
  51. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902PubMedCrossRefGoogle Scholar
  52. Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization of oaks. Proc Natl Acad Sci USA 94:9996–10001PubMedCrossRefGoogle Scholar
  53. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  54. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701PubMedCrossRefGoogle Scholar
  55. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedGoogle Scholar
  56. Qiu YX, Guan BC, Fu CX, Comes HP (2009) Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Mol Phylogenet Evol 51:281–293PubMedCrossRefGoogle Scholar
  57. Ramos ACS, De Lemos-Filho JP, Lovato MB (2009) Phylogeographical structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Hered 100:206–216PubMedCrossRefGoogle Scholar
  58. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140CrossRefGoogle Scholar
  59. Ribeiro RA, Lemos JP, Ramos ACS, Lovato MB (2011) Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest. Heredity 106:46–57PubMedCrossRefGoogle Scholar
  60. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  61. Rønsted N, Weiblen GD, Savolainen V, Cook JM (2008) Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Mol Phylogenet Evol 48:12–22PubMedCrossRefGoogle Scholar
  62. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  63. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474CrossRefGoogle Scholar
  64. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  65. Shih FL, Hwang SY, Cheng YP, Lee PF, Lin TP (2007) Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies kawakamii, Pinaceae). Am J Bot 94:194–202PubMedCrossRefGoogle Scholar
  66. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315PubMedCrossRefGoogle Scholar
  67. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264PubMedCrossRefGoogle Scholar
  68. Strand AE, Leebens-Mack J, Milligan BG (1997) Nuclear DNA-based markers for plant evolutionary biology. Mol Ecol 6:113–118PubMedCrossRefGoogle Scholar
  69. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  70. Tan B, Liu K, Yue XL, Liu F, Chen JM, Wang QF (2008) Chloroplast DNA variation and phylogeographic patterns in the Chinese endemic marsh herb Sagittaria potamogetifolia. Aquat Bot 89:372–378CrossRefGoogle Scholar
  71. Tani N, Tsumura Y, Sato H (2003) Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Mol Ecol 12:859–868PubMedCrossRefGoogle Scholar
  72. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  73. Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6:563–574CrossRefGoogle Scholar
  74. Vaezi J, Brouillet L (2009) Phylogenetic relationships among diploid species of Symphyotrichum (Asteraceae: Astereae) based on two nuclear markers, ITS and GAPDH. Mol Phylogenet Evol 51:540–553PubMedCrossRefGoogle Scholar
  75. Wang SY (2002) Yunnan geography. Yunnan Nation Press, KunmingGoogle Scholar
  76. Wang HW, Ge S (2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol Ecol 15:4109–4122PubMedCrossRefGoogle Scholar
  77. Wang JF, Pan YZ, Gong X, Chiang YC, Kuroda C (2011) Chloroplast DNA variation and phylogeography of Ligularia tongolensis (Asteraceae), a species endemic to the Hengduan Mountains region of China. J Syst Evol 49:108–119CrossRefGoogle Scholar
  78. Winkler MG, Wang PK (1993) The late-Quaternary vegetation and climate of China. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota, MinneapolisGoogle Scholar
  79. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  80. Wright S (1943) Isolation by distance. Genetics 28:114PubMedGoogle Scholar
  81. Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol Ecol 17:5135–5145PubMedCrossRefGoogle Scholar
  82. Yue JP, Sun H, David AB, Li JH, Ihsan AA-S, Richard REE (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47:402–415CrossRefGoogle Scholar
  83. Zheng Z (2000) Late Quaternary vegetational and climatic changes in the tropical and subtropical areas of China. Acta Micropalaeontol Sin 17:125–146Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.The Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations