Conservation Genetics

, Volume 13, Issue 1, pp 21–37 | Cite as

Combining multiple analytical approaches for the identification of population structure and genetic delineation of two subspecies of the endemic Arabian burnet moth Reissita simonyi (Zygaenidae; Lepidoptera)

Research Article


Habitat fragmentation and landscape topology may influence the genetic structure and connectivity between natural populations. Six microsatellite loci were used to infer the population structure of 35 populations (N = 788) of the alpine Arabian burnet moth Reissita simonyi (Lepidoptera, Zygaenidae) in Yemen and Oman. Due to the patchy distribution of larval food plants, R. simonyi is not continuously distributed throughout the studied area and the two recognized subspecies of this endemic species (Reissita s. simonyi/R. s. yemenicola) are apparently discretely distributed. All microsatellites showed prevalence of null alleles and therefore a thorough investigation of the impact of null alleles on different population genetic parameters (F ST, inbreeding coefficients, and Population Graph topologies) is given. In general, null alleles reduced genetic covariance and independence of allele frequencies resulting in a more connected genetic topology in Population Graphs and an overestimation of pairwise F ST values and inbreeding coefficients. Despite the presence of null alleles, Population Graphs also showed a much higher genetic connectivity within subspecies (and lower genetic differentiation (via F ST)) than between; supporting existing taxonomic distinction. Partial Mantel tests showed that both geographical distance and altitude were highly correlated with the observed distribution of genetic structure within R. simonyi. In conclusion, we identified geographical and altitudinal distances in R. simonyi as well as an intervening desert area to be the main factors for spatial genetic structure in this species and show that the taxonomic division into two subspecies is confirmed by genetic analysis.


Reissita simonyi Microsatellites Isolation-by-distance Isolation-by-altitude Landscape connectivity Null alleles 



We would like to thank especially Abdul Karim Nasher and Masaá Al-Jumaily (Sanaá) for their hospitality and invaluable help in Yemen. We thank the Yemeni Scientific Research Foundation (YSRF) for providing visa invitations. We are very grateful to Dr. Mohamed Ali Hubaishan (AREA Mukalla), Abdul Gadr Al-Haimi, Dr. Gabr Al-Kirshi (GTZ office, Taiz), Peter Hein, Norbert Kilian, Harald Kürschner (all FU Berlin), Christoph Oberprieler and Jörg Meister (Regensburg) Bruno Mies (Essen), Matthias Schultz (Hamburg), Tony van Haarten (Sanaá) and all master students, who worked within the BIOTA-EAST project. We also thank Marie-Pierre Chapuis for answering our questions regarding FreeNA. Special thanks to all lab members and technicians of the ZFMK in Bonn. This is a publication of the ZFMK Molecular Systematic Unit. We thank the German Federal Ministry of Education and Research (BMBF, Germany) for supporting this study, grant no. 01LC0025/E16 within the frame of the BIOLOG program, subprogram BIOTA-East. The simulation work was supported in part by National Science Foundation grants DEB-0543102 and DEB-0640803 to RJD.

Supplementary material

10592_2011_259_MOESM1_ESM.pdf (205 kb)
Online Resource 1: a) Pairwise FST values among 35 populations examined in this study. Corrected pairwise FST values using the ENA method (lower triangle matrix: Chapuis & Estoup 2007) to account for the presence of null alleles and uncorrected pairwise FST values (upper triangle matrix). b) Geographical and altitudinal distances among 35 populations. Geographical distances between localities (in km; lower triangle matrix) and altitudinal distances (in m; upper triangle matrix). (PDF 204 kb)
10592_2011_259_MOESM2_ESM.pdf (43 kb)
Online Resource 2: Average null allele frequencies for all populations and each microsatellite locus separately using the IIM algorithm implemented in INEST (Chybicki & Burczyk 2009). In parentheses, (RSY) and (RSS) indicate the two respective subspecies, R. s. yemenicola and R. s. simonyi. (PDF 43 kb)
10592_2011_259_MOESM3_ESM.pdf (27 kb)
Online Resource 3: Average null allele frequencies for populations and each microsatellite locus separately using the EM algorithm (Dempster et al. 1977) implemented in FREENA (Chapuis & Estoup 2007). In parentheses, (RSY) and (RSS) indicate the respective subspecies, R. s. yemenicola and R. s. simonyi. (PDF 27 kb)
10592_2011_259_MOESM4_ESM.pdf (58 kb)
Online Resource 4: Pairwise genetic distances (Dc; Cavalli-Sforza and Edwards 1967) among 35 populations using the INA method (including null alleles) implemented in FreeNA (Chapuis & Estoup 2007). (PDF 58 kb)
10592_2011_259_MOESM5_ESM.pdf (54 kb)
Online Resource 5: Density distribution of the number of edges in population graphs with simulated null alleles (control = no null alleles, rare null = lowest frequency treated as null, common null = most frequent allele treated as null). Mean differences are marginally significant (Kruskal–Wallis Test; χ2 = 7.1683, df = 2, P = 0.028) but were not different in variance (modified Kruskal–Wallis; χ2 = .375, df = 2, P = 0.8292). (PDF 54 kb)


  1. Abbott RJ, Ritchie MG, Hollingsworth PM (2008) Introduction. Speciation in plants and animals: pattern and process. Philos Trans R Soc Lond B Biol Sci 363(1506):2965–2969. doi: 10.1098/rstb.2008.0096 PubMedCrossRefGoogle Scholar
  2. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257PubMedGoogle Scholar
  3. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631. doi: 10.1093/molbev/msl191 PubMedCrossRefGoogle Scholar
  4. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100(1):106–113. doi: 10.1093/jhered/esn088 PubMedCrossRefGoogle Scholar
  5. Clobert J, Ims RA, Rousset F (2004) Causes, mechanisms, and consequences of dispersal. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Academic Press, London, pp 307–335CrossRefGoogle Scholar
  6. Conover WJ (1999) Practical nonparametric statistics. Wiley, New YorkGoogle Scholar
  7. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B 39:1–38Google Scholar
  8. Dyer RJ (2007) The evolution of genetic topologies. Theoret Popul Biol 71:71–79. doi: 10.1016/j.tpb.2006.07.001 CrossRefGoogle Scholar
  9. Dyer RJ (2009) GeneticStudio: a suite of programs for the spatial analysis of genetic marker data. Mol Ecol Resour 8:110–113. doi: 10.1111/j.1755-0998.2008.02384.x CrossRefGoogle Scholar
  10. Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727. doi: 10.1111/j.1365-294X.2004.02177.x PubMedCrossRefGoogle Scholar
  11. Dyer RJ, Nason JD, Garrick RC (2010) Landscape modeling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759. doi: 10.1111/j.1365-294X.2010.04748.x PubMedCrossRefGoogle Scholar
  12. Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Phil Trans R Soc B 365:3101–3112. doi: 10.1098/rstb.2010.0145 PubMedCrossRefGoogle Scholar
  13. Funk WC, Greene AE, Corn PS, Allendorf FW (2005) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett 1:13–16. doi: 10.1098/rsbl.2004.0270 PubMedCrossRefGoogle Scholar
  14. Garrick RC, Nason JD, Meadows CA, Dyer RJ (2009) Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsula. Mol Ecol 18:1916–1931. doi: 10.1111/j.1365-294X.2009.04148.x PubMedCrossRefGoogle Scholar
  15. Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactylum). Mol Ecol 16:1625–1637. doi: 10.1111/j.1365-294X.2006.03223.x PubMedCrossRefGoogle Scholar
  16. Goudet J (1995) Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86(6):485–486Google Scholar
  17. Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc B Biol Sci 272:2449–2456. doi: 10.1098/rspb.2005.3235 CrossRefGoogle Scholar
  18. Habel JC, Meyer M, Schmitt T (2009) The genetic consequence of differing ecological demands of a generalist and a specialist butterfly species. Biodivers Conserv 18:1895–1908. doi: 10.1007/s10531-008-9563-5 CrossRefGoogle Scholar
  19. Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:3349–3357. doi: 10.1046/j.1365-294X.2003.02012.x PubMedCrossRefGoogle Scholar
  20. Higgins K, Lynch M (2001) Metapopulation extinction caused mutation accumulation. Proc Natl Acad Sci USA 98(5):2928–2933. doi: 10.1073/pnas.031358898 PubMedCrossRefGoogle Scholar
  21. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. doi: 10.1186/1471-2156-6-13 PubMedCrossRefGoogle Scholar
  22. Karl I, Schmitt T, Fischer K (2009) Genetic differentiation between alpine and lowland populations of a butterfly is related to PGI enzyme genotype. Ecography 32(3):488–496. doi: 10.1111/j.1600-0587.2008.05660.x CrossRefGoogle Scholar
  23. Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064. doi: 10.1139/Z07-095 CrossRefGoogle Scholar
  24. Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495PubMedCrossRefGoogle Scholar
  25. Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909. doi: 10.1111/j.1365-294X.2005.02563.x PubMedCrossRefGoogle Scholar
  26. Klütsch CFC, Misof B, Naumann CM (2003) Characterization of microsatellite loci for Reissita simonyi (Rebel, 1899) (Lepidoptera, Zygaenidae). Mol Ecol Notes 3:528–531. doi: 10.1046/j.1471-8286.2003.00500.x CrossRefGoogle Scholar
  27. Klütsch CFC, Misof B, Naumann CM (2005) Extended distribution patterns of the Arabian burnet moth Reissita simonyi (Rebel, 1899) (Lepidoptera: Zygaenidae) and the Arabian wall brown Lasiommata felix (Warnecke, 1929) (Lepidoptera: Nymphalidae: Satyrinae) in Southern Arabia. Contrib Entomol 55(2):387–402Google Scholar
  28. Kraushaar U, Goudet J, Blanckenhorn WU (2002) Geographical and altitudinal population genetic structure of two dung fly species with contrasting mobility and temperature preference. Heredity 89:99–106. doi: 10.1038/sj.hdy.6800097 PubMedCrossRefGoogle Scholar
  29. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460PubMedCrossRefGoogle Scholar
  30. Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10:831–844. doi: 10.1111/j.1755-0998.2010.02866.x CrossRefGoogle Scholar
  31. Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681. doi: 10.1007/s10592-006-9213-y CrossRefGoogle Scholar
  32. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi: 10.1016/S0169-5347(03)00008-9 CrossRefGoogle Scholar
  33. Mayr E (1963) Animal Species and Evolution. Harvard University Press, Cambridge, p 797Google Scholar
  34. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. doi: 10.1111/j.0014-3820.2006.tb00500.x PubMedGoogle Scholar
  35. Meglécz E, Pecsenye K, Peregovits L, Varga Z (1997) Effects of population size and habitat fragmentation on the genetic variability of Parnassius mnemosyne populations in NE Hungary. Acta Zool Acad Scientiarum Hungarica 43:183–190Google Scholar
  36. Meglécz E, Petenian F, Danchin E, Coeur D’Acier A, Rasplus JY, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700. doi: 10.1111/j.1365-294X.2004.02163.x PubMedCrossRefGoogle Scholar
  37. Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Petenian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185. doi: 10.1111/j.1365-2583.2006.00713.x PubMedCrossRefGoogle Scholar
  38. Meister J, Hubaishan MA, Kilian N, Oberprieler C (2005) Chloroplast DNA variation in the shrub Justicia areysiana (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Bot J Linnean Soc 148:437–444. doi: 10.1111/j.1095-8339.2005.00421.x CrossRefGoogle Scholar
  39. Meister J, Hubaishan MA, Kilian N, Oberprieler C (2006) Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Plant Syst Evol 262:153–171. doi: 10.1007/s00606-006-0459-0 CrossRefGoogle Scholar
  40. Meister J, Kilian N, Oberprieler C (2008) Genetic structure of Euclea schimperi (Ebenaceae) populations in monsoonal fog oases of the Southern Arabian Peninsula. Nordic J Bot 25:217–226. doi: 10.1111/j.0107-055X.2007.00110.x CrossRefGoogle Scholar
  41. Naumann CM, Edelmann A (1984) Insects of Southern Arabia the life history, ecology and distribution of Reissita simonyi (Rebel, 1899) (Zygaenidae, Lepidoptera). Fauna of Saudi Arabia 6:473–509Google Scholar
  42. Nève G, Barascud B, Descimon H, Baguette M (2008) Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol 8:84. doi: 10.1186/1471-2148-8-84 PubMedCrossRefGoogle Scholar
  43. Oberprieler C, Meister J, Schneider C, Kilian N (2009) Genetic structure of Anogeissus dhofarica (Combretaceae) populations endemic to the monsoonal fog oases of the southern Arabian Peninsula. Biol J Linnean Soc 97:40–51. doi: 10.1111/j.1095-8312.2008.01173.x CrossRefGoogle Scholar
  44. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  45. Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  46. Rebel H (1899) Diagnosen neuer Lepidopteren aus Südarabien und von der Insel Sokotra. Anz Akad Wissenschaften 36:359–361Google Scholar
  47. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  48. Saccheri I, Kuussaari M, Kankare V, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  49. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  50. Schmitt T, Varga Z, Seitz A (2000) Forest as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl Ecol 1:53–59CrossRefGoogle Scholar
  51. Schtickzelle N, Joiris A, Van Dyck H, Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evol Biol 7:4. doi: 10.1186/1471-2148-7-4 PubMedCrossRefGoogle Scholar
  52. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  53. Sork V, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495. doi: 10.1111/j.1365-294X.2010.04786.x PubMedCrossRefGoogle Scholar
  54. Templeton AR, Robertson RJ, Brisson J, Strasburg J (2001) Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks. Proc Natl Acad Sci 98:5423–5426. doi: 10.1073/pnas.091093098 Google Scholar
  55. Van Dongen S, Backeljau T, Matthysen E, Dhondt AA (1998) Genetic population structure of the winter moth (Operophtera brumata L.) (Lepidoptera, Geometridae) in a fragmented landscape. Heredity 80:92–100CrossRefGoogle Scholar
  56. Van Dyck H, Baguette M (2005) Dispersal behavior in fragmented landscapes: routine or special movements? Basic Applied Ecol 6:535–545. doi: 10.1016/j.baae.2005.03.005 CrossRefGoogle Scholar
  57. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  58. Weir BS (1996) Genetic data analysis II. Sinauer Associates, SunderlandGoogle Scholar
  59. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  60. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany
  2. 2.Department of BiologyVirginia Commonwealth UniversityRichmond VirginiaUSA
  3. 3.Biozentrum Grindel & Zoologisches MuseumHamburgGermany
  4. 4.Biology DepartmentTrent UniversityPeterboroughCanada

Personalised recommendations