Skip to main content

Advertisement

Log in

Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Kenya’s black rhinoceros population declined by more than 98% from 20,000 individuals in the 1970s to around 400 individuals in 1990 due to the effects of poaching, at which time the surviving individuals were isolated in a series of demographically inviable subpopulations. An initial management exercise translocated the survivors into four high security sanctuaries to control poaching and enhance breeding, and this measure successfully arrested the decline. Subsequently, new sanctuaries were established and the metapopulation size reached 650 animals by 2008. However, translocations and the current management strategy that partitions the metapopulation into ‘montane’ and ‘lowland’ rhinoceros may have substantial consequences at the population level and their impact on population genetic diversity has not been investigated. In this study, 12 of the 16 extant subpopulations were analysed using 408 bp of mitochondrial control region sequence (n = 170) and nine microsatellite loci (n = 145). Both markers detected moderate to high genetic diversity (h = 0.78 ± 0.027, n = 170; HO = 0.70 ± 0.087, n = 145) consistent with previous studies on Diceros bicornis michaeli. However, mtDNA and nDNA diversity varied substantially between subpopulations. The results suggest that the Masai Mara is more differentiated, inbred and isolated than other subpopulations. It also suggests that there are neither distinct montane and lowland groups nor other detectable historical barriers to gene flow. Instead the large majority of genetic diversity was partitioned at the level of individuals; highlighting the need to conserve as many individuals as possible. Future translocations should consider the genetic profile of individuals and the demographic history of both the donor and recipient subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akama JS (1998) The evolution of wildlife conservation policies in Kenya. Association of Third World Studies, Inc, Nairobi, pp 1–11

    Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Applied Biosystems (2010) Peak scanner software. Applied Biosystems

  • Ashley MV, Melnick DJ, Western D (1990) Conservation genetics of the Black Rhinoceros (Diceros bicornis). I: evidence from the mitochondrial DNA of three populations. Conserv Biol 4:71–77

    Article  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Book  Google Scholar 

  • Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations. Genetics 141:743–753

    Google Scholar 

  • Barclay EN (1932) Big game shooting records; together with biographical notes and anecdotes on the most prominent big game hunters of ancient and modern times. H.F. & G. Witherby, London

    Google Scholar 

  • Beaumont MA, Storz JF (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical bayesian model. Evolution 56:154–166

    PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)

  • Bergl RA, Bradley JB, Nsubuga A, Vigilant L (2008) Effects of habitat fragmentation, population size and demographic history on genetic diversity: the Cross River gorilla in a comparative context. Am J Primatol 70:848–859

    Article  PubMed  Google Scholar 

  • Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift—equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627

    PubMed  Google Scholar 

  • Brett RA (1993) Conservation strategy and management plan for the black rhinoceros (Diceros bicornis) in Kenya: rhino conservation programme. Sponsored by the Zoological Society of London, p 69

  • Brian JS (2007) boa: an R package for MCMC output convergence assessment and posterior inference. J Stat Softw 21:1–37

    Google Scholar 

  • Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis). Mol Ecol 8:1559–1561

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (Diceros bicornis). Conserv Genet 1:365–370

    Article  CAS  Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond B 266:2269–2274

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterisation of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Foose TJ (2006) The threat to rhino’s survival. In: Blumer E, Lukas J, Foose TJ (eds) The North American save the Rhinos campaing. International Rhino Foundation, Florida

    Google Scholar 

  • Emslie R, Brooks M (1999) African Rhino. status survey and conservation action plan. IUCN/SSC African Rhino Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK

  • Emslie RH, Amin R, Kock R (2009) Guidelines for the in situ Re-introduction and translocation of African and Asian Rhinoceros. IUCN, Gland, Switzerland

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval L, Schneider S (2005) Arlequin ver. 3.1.1: an integrated software package for population genetics data analysis. Evol Bioinf 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Foster C, Aswath K, Chanock S, McKay H, Peters U (2006) Polymorphism analysis of six selenoprotein genes: support for a selective sweep at the glutathione peroxidase 1 locus (3p21) in Asian populations. BMC Genetics 7:56

    Article  PubMed  Google Scholar 

  • Frankham R, Balloua JD, Briscoe DA (2002) Introduction to conservation genetics, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gakahu CG (1993) African rhinos: current numbers and distribution. Zoological Society of San Diego, San Diego, pp 160–163

  • Garnier JN, Bruford MW, Goossens B (2001) Mating system and reproductive skew in black rhinoceros. Mol Ecol 10:2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Gene Codes Corporation (1988) An international software firm specializing in bioinformatics software for DNA sequence analysis. Ann Arbor, Michigan

    Google Scholar 

  • Goodman SJ, Tamate HB, Rea Wilson (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:357–1370

    Article  Google Scholar 

  • Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis, in Africa. Mol Ecol 14:2981–2990

    Article  PubMed  CAS  Google Scholar 

  • Hoarau G, Piquet AM-T, van der Veer HW et al (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. J Sea Res 51:183–190

    Article  CAS  Google Scholar 

  • Hunter JA (1952) Hunter. Hamish Hamilton London, London

    Google Scholar 

  • IUCN (2008) IUCN red list of threatened species. IUCN

  • IUCN SSC AfRSG (2008) Diceros bicornis. In: 2008 IUCN red list of threatened species. IUCN 2008

  • Jama M, Zhand Y, Aman RA, Ryder OA (1993) Sequence of the mitochondrial control region, tRNAThr, tRNAPro and tRNAPhe gene from the black rhinoceros, Diceros bicornis. Nucleic Acids Res 21:4392

    Article  PubMed  CAS  Google Scholar 

  • Laroche L, Durand JD (2004) Genetic structure of fragmented populations of a threatened endemic percid of the Rhône river: Zingel asper. Heredity 92:329–334

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones L, Brevet-Major W (1925) “Havash”! frontier adventures in Kenya: big game hunting with the king’s African rifles. Arrowsmith, London

    Google Scholar 

  • Long JC (1986) The allelic correlation structure of Gainj- and Kalam-speaking people. I. The estimation and interpretation of Wright’s F-statistics. Genetics 112:629–647

    PubMed  CAS  Google Scholar 

  • Marker LL, Wilkerson AJP, Sarno RJ et al (2008) Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia. J Hered 99:2–13

    Article  PubMed  CAS  Google Scholar 

  • Menotti-Raymond M, O’Brien SJ (1993) Dating the genetic bottleneck of the African cheetah. Proc Nat Acad Sci USA 90:3172–3176

    Article  PubMed  CAS  Google Scholar 

  • Merz A (1994) Rhino: at the brink of extinction. pp 176-179

  • Moehlman PD, Amato TG, Victor R (1996) Genetic and demographic threats to the black rhinoceros population in the Ngorongoro Crater. Conserv Biol 10:1107–1114

    Article  Google Scholar 

  • Morales CJ, Melnick DJ (1994) Molecular systematics of the living rhinoceros. Mol Phylogenet Evol 3:128–134

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Neumann AH (1898) Elephant-hunting in east equatorial Africa. London & Encino, California

    Google Scholar 

  • Nielsen L, Meehan-Meola D, Kilbourn A, Alcivar-Warren A (2008) Characterization of microsatellite loci in the black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum): their use for cross-species amplification and differentiation between the two species. Conserv Genet 9:239–242

    Article  CAS  Google Scholar 

  • Nyakaana S, Arctander P, Siegismund H (2002) Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity 89:90–98

    Article  PubMed  CAS  Google Scholar 

  • O’Ryan C, Flamand JRB, Harley EH (1994) Mitochondrial DNA variation in black rhinoceros (Diceros bicornis): conservation management implications. Conserv Biol 8:495–500

    Article  Google Scholar 

  • O’Brien SJDEW, Goldman D, Merril CR, Bush M (1983) The Cheetah is depauperate in genetic variation. Science 221:459–462

    Article  PubMed  Google Scholar 

  • Okello JBA, Masembe C, Rasmussen HB, Wittemyer G, Omondi P, Kahindi O, Muwanika VB, Arctander P, Douglas-Hamilton I, Nyakaana S, Siegismund HR (2008) Population genetic structure of savannah elephants in Kenya: conservation and management implications. J Hered. Accessed 20 July 2008

  • Okita-Ouma B (2004) Population performance of Black Rhinoceros (Diceros bicornis michaeli) in six Kenyan rhino sanctuaries. University of Kent, Canterbury

    Google Scholar 

  • Okita-Ouma B, Amin B, Kock R (2007) Conservation and management strategy for the black rhino (Diceros bicornis michaeli) and management guidelines for the white rhino (Ceratotherium simum simum) in Kenya (2007–2011). KWS, Nairobi, p 157

  • Patterson JH (1909) In the grip of the Nyika; further adventures in British East Africa. Macmillan and Co., Ltd, New York

    Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Roca AL, Georgiadis N, O’Brien SJ (2007) Cyto-nuclear genomic dissociation and the African elephant species question. Quat Int 169(170):116–174

    Google Scholar 

  • Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Google Scholar 

  • Scott CA (2008) Microsatellite variability in four contemporary rhinoceros species: implications for conservation. Department of Biology, Queen’s University Kingston, Ontario, Canada

    Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  PubMed  Google Scholar 

  • Swart MKJ, Ferguson JWH, du Toit R, Flamand JRB (1994) Substantial genetic variation in southern African black rhinoceros. J Hered 85:261–266

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistic for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yeh F, Yang R, Boyle T (2000) POPGENE version 1.32. Department of Renewable Resources at the University of Alberta, Canada, Alberta

  • Zschokke S, Gautschi B, Baur B (2003) Polymorphic microsatellite loci in the endangered Indian rhinoceros, Rhinoceros unicornis. Mol Ecol Notes 3:233–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the following Institutions: Jomo Kenyatta University of Agriculture and Technology, Commonwealth Scholarship Commission, US Fish and Wildlife Rhinoceros and Tiger Conservation Fund, Cardiff University and the Kenya Wildlife Service. We would like to specifically express our gratitude to Mireille Johnson-Bawe of Cardiff University, Antony Wandera and Patrick Omondi from Kenya Wildlife Service and Corynne Mulcahy and Lindsey Nielsen from Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA. Kenya Wildlife Service (Export Permit No. 003105), CITES (Permit No. 304050/01), and the Department for Environment, Food and Rural Affairs of UK (Licence No. PATH/22/2007/1) gave us permission to export and/or import black rhinoceros samples from Kenya to United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Muya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muya, S.M., Bruford, M.W., Muigai, A.WT. et al. Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation. Conserv Genet 12, 1575–1588 (2011). https://doi.org/10.1007/s10592-011-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0256-3

Keywords

Navigation