Conservation Genetics

, Volume 12, Issue 5, pp 1183–1194 | Cite as

Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes

  • Y. Zimmermann
  • D. L. P. Schorkopf
  • R. F. A. Moritz
  • R. W. Pemberton
  • J. J. G. Quezada-Euan
  • T. Eltz
Research Article


Habitat degradation and fragmentation are widespread phenomena in tropical regions. Negative effects on the biota are numerous, ranging from interruption of gene flow among populations, to the loss of genetic diversity within populations, to a decline in species richness over time. Orchid bees (Hymenoptera: Apidae: Euglossini) are of major conservation interest due to their function as pollinators of numerous orchid species and other tropical plants. Here, we used microsatellite markers to investigate the effects of geographic distance and habitat fragmentation on gene flow among populations. Populations of Euglossa dilemma in three geographic regions—the Yucatán peninsula (Mexico), Veracruz (Mexico), and Florida (USA)—were genetically structured predominantly across the regions, with the strength of differentiation among populations being positively correlated with geographic distance. Within geographic regions only little substructure was found, suggesting that dispersal is substantial in the absence of geographic or ecological barriers. In a second study, patterns of genetic differentiation among eight species of Euglossa were not related to habitat fragmentation following deforestation in southern Mexico (Veracruz). Specifically, most bee populations in the 9,800 ha forest remnant of Los Tuxtlas (Volcano San Martin) were neither differentiated from, nor had less genetic diversity than, populations in near-continuous forest separated from Los Tuxtlas by 130 km of agricultural land. Either occasional long distance dispersal across open areas has buffered the expected genetic effects of fragmentation, or the history of fragmentation in southern Mexico is too recent to have caused measurable shifts in allelic composition.


Euglossa viridissima Euglossa dilemma Gene flow Long-distance dispersal Forest fragmentation Pollinator decline 



We wish to thank Rosamond Coates and the staff of the Los Tuxtlas Biological station for their hospitality and support during field sampling. Ricardo Ayala kindly provided a collecting permit for euglossine bees in southern Mexico, Klaus Lunau and the Sensory Ecology lab at the University of Düsseldorf hosted part of the molecular analyses, and Martin Beye and Martin Hasselmann provided expertise and technical advice. Supported by the German Science Foundation (EL 249/3), SEP-CONACYT 103341, and a Mutual-Foncicyt grant.


  1. Ackerman JD (1981) Phenological relationships of male euglossine bees (Hymenoptera: Apidae) and their orchid fragrance hosts. Florida State University. Florida State University, TallahasseeGoogle Scholar
  2. Ackerman JD (1983) Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in Central Panama. Ecology 64:274–283CrossRefGoogle Scholar
  3. Ackerman JD (1989) Geographic and seasonal variation in fragrance choice and preferences of male euglossine bees. Biotropica 21:340–347CrossRefGoogle Scholar
  4. Ackerman JD, Montalvo AM (1985) Longevity of euglossine bees. Biotropica 17:79–81CrossRefGoogle Scholar
  5. Ackerman JD, Mesler MR, Lu KL, Montalvo AM (1982) Food-foraging behavior of male Euglossini (Hymenoptera: Apidae): vagabonds or trapliners? Biotropica 14:281–289CrossRefGoogle Scholar
  6. Armbruster WS (1993) Within-habitat heterogeneity in baiting samples of male euglossine bees: possible causes and implications. Biotropica 25:122–128CrossRefGoogle Scholar
  7. Armbruster WS, Keller S, Matsuki M, Clausen TP (1989) Pollination of Dalechampia magnolifolia (Euphorbiaceae) by male euglossine bees. Am J Bot 76:1279–1285CrossRefGoogle Scholar
  8. Augusto SC, Garofalo CA (2004) Nesting biology and social structure of Euglossa (Euglossa) townsendi Cockerell (Hymenoptera, Apidae, Euglossini). Insectes Sociaux 51:400–409CrossRefGoogle Scholar
  9. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165PubMedCrossRefGoogle Scholar
  10. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  11. Becker P, Moure JS, Peralta FJA (1991) More about euglossine bees in Amazonian forest fragments. Biotropica 23:586–591CrossRefGoogle Scholar
  12. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154PubMedCrossRefGoogle Scholar
  13. Brosi BJ (2009) The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol Conserv 142:414–423CrossRefGoogle Scholar
  14. Cairns MA, Haggerty PK, Alvarez R, De Jong BHJ, Olmsted I (2000) Tropical Mexico’s recent land-use change: a region’s contribution to the global carbon cycle. Ecol Appl 10:1426–1441CrossRefGoogle Scholar
  15. Cane JH (2001) Habitat fragmentation and native bees: a premature verdict? Conserv Ecol 5: art. no. 3Google Scholar
  16. Cocom Pech ME, May-Itza WD, Medina Medina LA, Quezada-Euan JJG (2008) Sociality in Euglossa (Euglossa) viridissima Friese (Hymenoptera, Apidae, Euglossini). Insectes Sociaux 55:428–433CrossRefGoogle Scholar
  17. Cook JM (1993) Sex determination in the hymenoptera—a review of models and evidence. Heredity 71:421–435CrossRefGoogle Scholar
  18. Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera : Apidae). Mol Ecol 15:601–611PubMedCrossRefGoogle Scholar
  19. Dick CW, Roubik DW, Gruber KF, Bermingham E (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Mol Ecol 13:3775–3785PubMedCrossRefGoogle Scholar
  20. Dieringer D, Schlotterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  21. Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH (1969) Biologically active compounds in orchid fragrances. Science 164:1243–1249PubMedCrossRefGoogle Scholar
  22. Dressler RL (1968a) Observations on orchids and euglossine bees in Panama and Costa Rica. Revista de Biología Tropical 15:143–183Google Scholar
  23. Dressler RL (1968b) Pollination by euglossine bees. Evolution 22:202–210CrossRefGoogle Scholar
  24. Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394CrossRefGoogle Scholar
  25. Eltz T, Roubik DW, Lunau K (2005) Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav Ecol Sociobiol 59:149–156CrossRefGoogle Scholar
  26. Eltz T, Zimmermann Y, Haftmann J, Twele R, Francke W, Quezada-Euan JJG, Lunau K (2007) Enfleurage, lipid recycling and the origin of perfume collection in orchid bees. Proc Roy Soc B Biol Sci 274:2843–2848CrossRefGoogle Scholar
  27. Eltz T, Zimmermann Y, Pfeiffer C, Ramirez Pech J, Twele R, Francke W, Quezada-Euan JJG, Lunau K (2008) An olfactory shift is associated with male perfume differentiation and sibling species divergence in orchid bees. Curr Biol 18:1844–1848PubMedCrossRefGoogle Scholar
  28. Eltz T, Fritzsch F, Ramírez Pech J, Zimmermann Y, Ramírez SR, Quezada-Euan JJG, Bembé B (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a new cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linn Soc (in press)Google Scholar
  29. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  30. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  31. Garofalo CA (1985) Social structure of Euglossa cordata nests (Hymenoptera: Apidae: Euglossini). Entomol Gen 11:77Google Scholar
  32. Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154PubMedCrossRefGoogle Scholar
  33. Hartter J, Lucas C, Gaughan AE, Aranda LL (2008) Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucatán Peninsula, Mexico. Appl Geogr 28:134–149CrossRefGoogle Scholar
  34. Hunt GJ, Page RE (1995) Linkage map of the honey-bee, Apis mellifera, based on RAPD markers. Genetics 139:1371–1382PubMedGoogle Scholar
  35. Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205PubMedCrossRefGoogle Scholar
  36. Janzen DH, DeVries PJ, Higgins ML, Kimsey LS (1982) Seasonal and site variation in Costa Rican euglossine bees at chemical baits in lowland deciduous and evergreen forest. Ecology 63:66–74CrossRefGoogle Scholar
  37. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  38. Kroodsma DE (1975) Flight distances of male euglossine bees in orchid pollination. Biotropica 7:71–72CrossRefGoogle Scholar
  39. Liu H, Pemberton RW (2009) Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum. Oecologia 159:515–525PubMedCrossRefGoogle Scholar
  40. Lopez-Uribe MM, Almanza MT, Ordonez M (2007) Diploid male frequencies in Colombian populations of euglossine bees. Biotropica 39:660–662CrossRefGoogle Scholar
  41. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209PubMedGoogle Scholar
  42. Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Revista Chilena de Historia Natural 78:451–467CrossRefGoogle Scholar
  43. Milet-Pinheiro P, Schlindwein C (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures? Revista Brasileira de Zoologia 22:853–858CrossRefGoogle Scholar
  44. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  45. Otero JT, Sandin JC (2003) Capture rates of male euglossine bees across a human intervention gradient, Choco region, Colombia. Biotropica 35:520–529Google Scholar
  46. Otero JT, Ulloa-Chacon P, Silverstone-Sopkin P, Giray T (2008) Group nesting and individual variation in behavior and physiology in the orchid bee Euglossa nigropilosa Moure (Hymenoptera, Apidae). Insectes Sociaux 55:320–328CrossRefGoogle Scholar
  47. Paxton RJ, Zobel MU, Steiner J, Zillikens A (2009) Microsatellite loci for Euglossa annectans (Hymenoptera: Apidae) and their variability in other orchid bees. Mol Ecol Resour. doi:  10.1111/j.1755-0998.2009.02612.x
  48. Pearson DL, Dressler RL (1985) Two-year study of male orchid bee (Hymenoptera: Apidae: Euglossini) attraction to chemical baits in lowland south-eastern Peru. J Trop Ecol 1:37–54CrossRefGoogle Scholar
  49. Pemberton RW (2007) Invasive orchid bee, Euglossa viridissima, pollinates the ornamental orchid (Guarianthe skinneri) in Florida. Lankesteriana 7:461–468Google Scholar
  50. Pemberton RW, Liu H (2008) Potential of invasive and native solitary specialist bee pollinators to help restore the rare cowhorn orchid (Cyrtopodium punctatum) in Florida. Biol Conserv 141:1758–1764CrossRefGoogle Scholar
  51. Pemberton RW, Wheeler GS (2006) Orchid bees don’t need orchids: evidence from the naturalization of an orchid bee in Florida. Ecology 87:1995–2001PubMedCrossRefGoogle Scholar
  52. Powell AH, Powell GVN (1987) Population dynamics of male euglossine bees in Amazonian forest fragments. Biotropica 19:176–179CrossRefGoogle Scholar
  53. Ramirez SR, Dressler RL, Ospina M (2002) Euglossine bees (Hymenoptera: Apidae) from the Neotropical Region: a species checklist with notes on their biology. Biota Colombiana 3:10–118Google Scholar
  54. Ramirez-Arriaga E, Cuadriello-Aguilar JI, Hernandez EM (1996) Nest structure and parasite of Euglossa atroveneta Dressler (Apidae: Bombinae: Euglossini) at Union Juarez, Chiapas, Mexico. J Kansas Entomol Soc 69:144–152Google Scholar
  55. Raw A (1989) The dispersal of euglossine bees between isolated patches of eastern Brazilian wet forest (Hymenoptera, Apidae). Revista Brasileira de Entomologia 33:103–107Google Scholar
  56. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Rincon M, Roubik DW, Finegan B, Delgado D, Zamora N (1999) Understory bees and floral resources in logged and silviculturally treated Costa Rican rainforest plots. J Kansas Entomol Soc 72:379–393Google Scholar
  59. Roderick GK (1996) Geographic structure insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352PubMedCrossRefGoogle Scholar
  60. Roubik DW, Ackerman JD (1987) Long-term ecology of euglossine orchid bees (Apidae: Euglossini) in Panama. Oecologia 73:321–333CrossRefGoogle Scholar
  61. Roubik DW, Hanson PE (2004) Orchid bees of tropical America: biology and field guide. Instituto Nacional de Biodiversidad Press (INBio), Heredia, Costa RicaGoogle Scholar
  62. Roubik DW, Weigt LA, Bonilla MA (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees. Evolution 50:931–935CrossRefGoogle Scholar
  63. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  64. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation—a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  65. Skov C, Wiley J (2005) Establishment of the neotropical orchid bee Euglossa viridissima (Hymenoptera: Apidae) in Florida. Fla Entomol 88:225–227CrossRefGoogle Scholar
  66. Souza RO, Cervini M, Del Lama MA, Paxton RJ (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae). Mol Ecol Notes 7:1352–1356CrossRefGoogle Scholar
  67. Souza RO, Del Lama MA, Cervini M, Mortari N, Eltz T, Zimmermann Y, Bach C, Brosi BJ, Suni S, Quezada-Euán JJG, Paxton RJ (2010) Conservation genetics of neotropical pollinators revisited: microsatellite analysis demonstrates that diploid males are rare in orchid bees. Evolution 64:3318–3326PubMedCrossRefGoogle Scholar
  68. Tonhasca A Jr, Blackmer JL, Albuquerque GS (2002) Within-habitat heterogeneity of euglossine bee populations: a re-evaluation of the evidence. J Trop Ecol 18:929–933Google Scholar
  69. Tonhasca A Jr, Albuquerque GS, Blackmer JL (2003) Dispersal of euglossine bees between fragments of Brazilian Atlantic Forest. J Trop Ecol 19:99–102Google Scholar
  70. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  71. Turner IM, Corlett RT (1996) The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol Evol 11:330–333PubMedCrossRefGoogle Scholar
  72. Turner BL et al (2001) Deforestation in the southern Yucatán peninsular region: an integrative approach. For Ecol Manag 154:353–370CrossRefGoogle Scholar
  73. Vester HFM, Lawrence D, Eastman JR, Turner BL, Calme S, Dickson R, Pozo C, Sangermano F (2007) Land change in the southern Yucatán and Calakmul biosphere reserve: effects on habitat and biodiversity. Ecol Appl 17:989–1003PubMedCrossRefGoogle Scholar
  74. Vogel S (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österreichische Botanische Zeitschrift 113:302–361CrossRefGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  76. Whitten WM, Young AM, Stern DL (1993) Nonfloral sources of chemicals that attract male euglossine bees (Apidae: Euglossini). J Chem Ecol 19:3017–3027CrossRefGoogle Scholar
  77. Williams NH, Dodson CH (1972) Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow. Evolution 26:84–95CrossRefGoogle Scholar
  78. Zayed A, Roubik DW, Packer L (2004) Use of diploid male frequency data as an indicator of pollinator decline. Proc Roy Soc B Biol Sci 271:9–12CrossRefGoogle Scholar
  79. Zimmermann Y, Roubik DW, Eltz T (2006) Species-specific attraction to pheromonal analogues in orchid bees. Behav Ecol Sociobiol 60:833–843CrossRefGoogle Scholar
  80. Zimmermann Y, Ramirez SR, Eltz T (2009a) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90:2994–3008PubMedCrossRefGoogle Scholar
  81. Zimmermann Y, Roubik DW, Quezada-Euan JJG, Paxton RJ, Eltz T (2009b) Single mating in orchid bees (Euglossa, Apinae): implications for mate choice and social evolution. Insectes Sociaux 56:241–249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Y. Zimmermann
    • 1
  • D. L. P. Schorkopf
    • 2
  • R. F. A. Moritz
    • 3
  • R. W. Pemberton
    • 4
  • J. J. G. Quezada-Euan
    • 5
  • T. Eltz
    • 1
    • 6
  1. 1.Sensory Ecology GroupUniversity of DüsseldorfDüsseldorfGermany
  2. 2.Department for Neurobiology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  3. 3.Molecular Ecology Research GroupUniversity of Halle-WittenbergHalleGermany
  4. 4.Fairchild Tropical Botanic Garden and Florida Museum of Natural HistoryFort LauderdaleUSA
  5. 5.Departamento de Apicultura, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánMéridaMexico
  6. 6.Department of Evolutionary Ecology and Animal BiodiversityRuhr-Universität BochumBochumGermany

Personalised recommendations