Advertisement

Conservation Genetics

, Volume 11, Issue 4, pp 1559–1565 | Cite as

Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain

  • Anna Kuparinen
  • Jarle Tufto
  • Sonia Consuegra
  • Kjetil Hindar
  • Juha Merilä
  • Carlos Garcia de Leaniz
Short communication

Abstract

The genetic diversity of metapopulations is influenced not only by the effective sizes (N e ) of individual subpopulations, but also by the total effective size of the metapopulation (meta-N e ). We estimated meta-N e of four neighbouring Atlantic salmon populations connected by gene flow using genetic estimates of subpopulation N e s and migration rates derived from capture–recapture data. The \( meta{\hbox{-}}\hat{N}_{e} \) was lower than the sum of \( \hat{N}_{e} \)s of the subpopulations, suggesting that genetic diversity harboured by the four river salmon metapopulation is lower than what would have been expected by viewing individual subpopulations separately. In addition, \( meta{\hbox{-}}\hat{N}_{e} \) was found to be sensitive to changes in \( \hat{N}_{e} \) of the subpopulation from which net emigration rate was largest, so as that the genetic diversity of the metapopulation would be best preserved by avoiding any reductions in N e of this subpopulation. Yet, this subpopulation is the one that has historically—and still is—experiencing the highest exploitation rate in the metapopulation system.

Keywords

Atlantic salmon Conservation Effective population size Fisheries Metapopulation Salmo salar L. 

Notes

Acknowledgments

We thank ESF Conservation Genetics program and Academy of Finland for financial support. We thank Daniel Ruzzante and two anonymous referees for their comments on the earlier version of the manuscript.

References

  1. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  2. Bolker BM (2008) Ecological models and data in R. Princeton University Press, PrincetonGoogle Scholar
  3. Ciborowski KL, Consuegra S, Garcia de Leaniz C, Wang J, Beaumont MA, Jordan WC (2007) Stocking may have increased mitochondrial DNA diversity but has not reversed the decline of Spanish Atlantic salmon populations. Cons Gen 8:1355–1367CrossRefGoogle Scholar
  4. Consuegra S, Garcia de Leaniz C (2007) Fluctuating sex ratios but not sex-biased dispersal in a promiscuous fish. Evol Ecol 21:229–245CrossRefGoogle Scholar
  5. Consuegra S, Verspoor E, Knox D, Garcia de Leaniz C (2005) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Cons Gen 6:823–842CrossRefGoogle Scholar
  6. Cooper AP, Mangel M (1999) The dangers of ignoring metapopulation structure for the conservation of salmonids. Fish Bull 97:213–226Google Scholar
  7. Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structures in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396CrossRefPubMedGoogle Scholar
  8. Ford JS, Myers RA (2008) A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol 6:411–417CrossRefGoogle Scholar
  9. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Gen Res 66:95–107CrossRefGoogle Scholar
  10. Franklin IR (1980) Evolutionary challenge in small populations. In: Soule ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, pp 135–149Google Scholar
  11. Fraser DJ, Hansen MM, Østergaard S, Tessier N, Legault M, Bernatchez L (2007a) Comparative estimation of effective population size and temporal gene flow in two contrasting population systems. Mol Ecol 16:3866–3889CrossRefPubMedGoogle Scholar
  12. Fraser DJ, Jones MW, McParland TL, Hutchings JA (2007b) Loss of historical immigration and the unsuccessful rehabilitation of extirbated salmon populations. Cons Gen 8:527–546CrossRefGoogle Scholar
  13. Garcia de Leaniz C, Consuegra S, Serdio S (eds) (2001) El Salmón. Joya de Nuestros Ríos. Santander: Gobierno de Cantabria, Consejería de Ganadería, Agricultura y Pesca, Dirección General de Montes y Conservación de la Naturaleza. 330 pp. [In Spanish with English Abstracts]Google Scholar
  14. Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vøllestad LA, Villanueva B, Ferguson A, Quinn TP (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211CrossRefPubMedGoogle Scholar
  15. Garcia de Leaniz C, Caballero P, Valero E, Martinez JJ, Hawkins AD (1992) Historical changes in some Spanish rod and line salmon, Salmo salar L. fisheries: why are large multi-seawinter fish becoming scarcer. J Fish Biol 41:179CrossRefGoogle Scholar
  16. Hansen MM, Skaala Ø, Jensen LF, Bekkevold D, Mensberg K-LD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Mol Ecol 16:1413–1425CrossRefPubMedGoogle Scholar
  17. Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16CrossRefGoogle Scholar
  18. Hendry AP, Stearns SC (2004) Evolution illuminated. Salmon and their relatives.. Oxford University Press, New YorkGoogle Scholar
  19. Hindar K, Tufto J, Sættem LM, Balstad T (2004) Conservation of genetic variation in harvested salmon populations. ICES J Mar Sci 61:1389–1397CrossRefGoogle Scholar
  20. Hindar K, Garcia de Leaniz C, Koljonen M-L, Tufto J, Youngson AF (2007) Fisheries exploitation. In: Verspoor E, Stradmeyer L, Nielsen J (eds) The Atlantic Salmon: Genetics, conservation and management. Blackwell, Oxford, pp 306–330Google Scholar
  21. Jonsson B, Jonsson N, Hansen LP (2003) Atlantic salmon straying from the River Imsa. J Fish Biol 62:641–657CrossRefGoogle Scholar
  22. Kuparinen A, Garcia de Leaniz C, Consuegra S, Merilä J (2009) Growth history perspective on decreasing age and size at maturation of exploited Atlantic salmon. Mar Ecol Prog Series 376:245–252CrossRefGoogle Scholar
  23. Martinez JL, Moran P, Perez J, de Gaudemar P, Beall E, Garcia-Vazquez E (2000) Multiple paternity increases effective size of Southern Atlantic salmon populations. Mol Ecol 9:293–298CrossRefPubMedGoogle Scholar
  24. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonGoogle Scholar
  25. Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55:427–437CrossRefGoogle Scholar
  26. Nunney L (1999) The effective size of a hierarchically structured population. Evolution 53:1–10CrossRefGoogle Scholar
  27. Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135CrossRefPubMedGoogle Scholar
  28. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  29. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447CrossRefPubMedGoogle Scholar
  30. Palstra FP, O’Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life-history. Mol Ecol 16:4504–4522CrossRefPubMedGoogle Scholar
  31. Quinn TP (1993) A review of homing and straying of wild and hatchery produced Atlantic salmon. Fish Res 18:29–44CrossRefGoogle Scholar
  32. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Cons Biol 17:230–237CrossRefGoogle Scholar
  33. Ribeiro A, Morán P, Caballero A (2008) Genetic diversity and effective size of the Atlantic salmon Salmo salar L. inhabiting the river Eo (Spain) following a stock collapse. J Fish Biol 72:1933–1944CrossRefGoogle Scholar
  34. Saura S, Caballero P, Caballero A, Moran P (2006) Genetic variation in restored Atlantic salmon (Salmo salar L.) populations in the Ulla and Lérez rivers, Galicia, Spain. ICES J Mar Sci 63:1290–1296CrossRefGoogle Scholar
  35. Schtickzelle N, Quinn T (2007) A metapopulation perspective for salmon and other anadromous fish. Fish Fish 8:297–314Google Scholar
  36. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  37. Stabell OB (1984) Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biol Rev 59:333–388CrossRefGoogle Scholar
  38. Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity acrossa generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol Ecol 8:169–179CrossRefGoogle Scholar
  39. Tufto J (2001) Effects of releasing maladapted individuals: a demographic-evolutionary model. Am Nat 158:331–340CrossRefPubMedGoogle Scholar
  40. Tufto J, Hindar K (2003) Effective size in management of conservation of subdivided population. J Theor Biol 222:273–281CrossRefPubMedGoogle Scholar
  41. Verspoor E, Stradmeyer L, Nielsen JL (2007) The Atlantic Salmon: Genetics, conservation and management. Blackwell Publishing, OxfordGoogle Scholar
  42. Wang J, Whitlock MC (2003) Estimating effective population size and migration rate from genetic samples over space and time. Genetics 163:429–446PubMedGoogle Scholar
  43. Waples RS (2002a) Effective size of fluctuating salmon populations. Genetics 161:783–791PubMedGoogle Scholar
  44. Waples RS (2002b) Definition and estimation of effective population size in the conservation of endangered species. In: Beissinger SR, McCullough DR (eds) Population viability analysis. Univ. Chicago Press, Chicago, pp 147–168Google Scholar
  45. Whitlock MC (1999) Neutral additive genetic variance in a metapopulation. Genet Res 74:215–221CrossRefPubMedGoogle Scholar
  46. Whitlock MC (2004) Selection and drift in metapopulations. In: Hanski I, Gaggiotti O (eds) Ecology, Genetics, and Evolution in Metapopulations. Elsevier Academic Press, Amsterdam, pp 153–174CrossRefGoogle Scholar
  47. Whitlock MC, Barton NH (1997) The effective size of a subdivided population. Genetics 146:427–441PubMedGoogle Scholar
  48. Willi Y, van Buskirk J, Schmid B, Fisher M (2007) Genetic isolation of fragmented populations is exacerbated by drift and selection. J Evol Biol 20:534–542CrossRefPubMedGoogle Scholar
  49. World Wildlife Fund (2001) The status of wild Atlantic salmon: a river by river assessment. assests.panda.org/downloads/salmon2.pdfGoogle Scholar
  50. Wright S (1939) Statistical genetics in relation to evolution. Actualites scientifiques et industrielles 802. Exposes de biometrie et de la statistique biologique XIII, Hermann et Cie. ParisGoogle Scholar
  51. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anna Kuparinen
    • 1
  • Jarle Tufto
    • 2
  • Sonia Consuegra
    • 3
  • Kjetil Hindar
    • 4
  • Juha Merilä
    • 1
  • Carlos Garcia de Leaniz
    • 5
  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiTurkuFinland
  2. 2.Center for Conservation Biology, Department of Mathematical SciencesNorwegian University of Sciences and TechnologyTrondheimNorway
  3. 3.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
  4. 4.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  5. 5.School of the Environment and Society, Institute of Environmental SustainabilitySwansea UniversitySwanseaUK

Personalised recommendations