Advertisement

Conservation Genetics

, 10:2005 | Cite as

Sampling error in non-invasive genetic analyses of an endangered social carnivore

  • Penny A. Spiering
  • Micaela Szykman Gunther
  • David E. Wildt
  • Michael J. Somers
  • Jesús E. Maldonado
Technical Note

Abstract

Modern non-invasive genetic technologies are useful in studies of rare and difficult-to-observe species. An examination of endangered African wild dog (Lycaon pictus) faecal DNA revealed that 11.4% of samples were assigned incorrectly to an individual. Sampling mistakes in the field are not normally considered in non-invasive genetic assessments, but can be a significant source of error. To ensure meticulous data interpretation, non-invasive genetic studies should track and report sampling inaccuracies.

Keywords

Lycaon pictus Non-invasive Microsatellites Sampling error Faecal sampling 

Notes

Acknowledgments

This research was supported by Smithsonian Institution, University of Pretoria, Rotterdam Thandiza Fund, Humboldt State University, Association of Zoos and Aquariums, Disney Wildlife Conservation Fund, Knowsley Safari Park, DST-NRF Centre of Excellence for Invasion Biology, Pittsburgh Zoo and Morris Animal Foundation.

References

  1. Archie EA, Maldonado JE, Hollister-Smith JA et al (2008) Fine-scale population genetic structure in a fission–fusion society. Mol Ecol 17:2666–2679. doi: 10.1111/j.1365-294X.2008.03797.x CrossRefPubMedGoogle Scholar
  2. Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273. doi: 10.1111/j.1365-294X.2004.02346.x CrossRefPubMedGoogle Scholar
  3. Creel S, Creel NM (2002) The African wild dog: behavior, ecology and conservation. Princeton University Press, PrincetonGoogle Scholar
  4. Eggert LS, Maldonado JE, Fleischer RC (2005) Nucleic acid isolation from ecological samples: animal scat and other associated materials. In: Molecular evolution: producing the biochemical data, part B. Methods Enzym 395:73–87Google Scholar
  5. Estes R, Goddard J (1967) Prey selection and hunting behaviour of the African wild dog. J Wildl Manage 31:52–70. doi: 10.2307/3798360 CrossRefGoogle Scholar
  6. Gabriele CM, Straley JM, Mizroch SA et al (2001) Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Can J Zool 79:589–600. doi: 10.1139/cjz-79-4-589 CrossRefGoogle Scholar
  7. Gusset M, Ryan SJ, Hofmeyr M et al (2008) Efforts going to the dogs? Evaluating attempts to reintroduce endangered wild dogs in South Africa. J Appl Ecol 45:100–108CrossRefGoogle Scholar
  8. Keay JM, Singh J, Gaunt MC, Kaur T (2006) Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildl Med 37:234–244. doi: 10.1638/05-050.1 CrossRefPubMedGoogle Scholar
  9. Kelly MJ (2001) Computer-aided photograph matching in studies using individual identification: an example from Serengeti cheetahs. J Mammal 82:440–449. doi: 10.1644/1545-1542(2001)082<0440:CAPMIS>2.0.CO;2 CrossRefGoogle Scholar
  10. Kohn MK, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12:223–227. doi: 10.1016/S0169-5347(97)01050-1 CrossRefGoogle Scholar
  11. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi: 10.1046/j.1365-294x.1998.00374.x CrossRefPubMedGoogle Scholar
  12. Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedGoogle Scholar
  13. Milligan JL, Davis AK, Altizer SM (2003) Errors associated with using colored leg bands to identify wild birds. J Field Ornithol 74:111–118Google Scholar
  14. Stavisky RC, Whitten PL, Hammett DH, Kaplan JR (2001) Lake pigments facilitate analysis of faecal cortisol and behavior in group-housed macaques. Am J Phys Anthropol 116:51–58. doi: 10.1002/ajpa.1101 CrossRefPubMedGoogle Scholar
  15. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi: 10.1046/j.1365-294X.2001.01185.x CrossRefPubMedGoogle Scholar
  16. Woodroffe R, Ginsberg JR, Macdonald DW (1997) The African wild dog- status survey and conservation action plan. IUCN, GlandGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Penny A. Spiering
    • 1
    • 2
    • 3
  • Micaela Szykman Gunther
    • 2
    • 4
  • David E. Wildt
    • 2
  • Michael J. Somers
    • 3
    • 5
  • Jesús E. Maldonado
    • 1
  1. 1.Center for Conservation and Evolutionary Genetics, National Zoological ParkSmithsonian InstitutionWashingtonUSA
  2. 2.Center for Species Survival, Conservation and Research Center, National Zoological ParkSmithsonian InstitutionFront RoyalUSA
  3. 3.Centre for Wildlife ManagementUniversity of PretoriaPretoriaSouth Africa
  4. 4.Department of WildlifeHumboldt State UniversityArcataUSA
  5. 5.Centre for Invasion BiologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations