Advertisement

Conservation Genetics

, Volume 10, Issue 4, pp 1171–1173 | Cite as

Isolation and characterization of 12 microsatellite loci from cutlassfish (Trichiurus haumela)

  • Jin-Zhen Bi
  • Chang-Wei Shao
  • Gui-Dong Miao
  • Hong-Yu Ma
  • Song-Lin Chen
Technical Note

Abstract

The cutlassfish (Trichiurus haumela) is an important commercial fish species. In the present study, we report 12 polymorphic microsatellite DNA markers for cutlassfish. The number of alleles per locus ranged from 2 to 9 in a sample of 26 individuals. Observed and expected heterozygosities per locus varied from 0.2727 to 0.9583 and from 0.4059 to 0.7926, respectively. Two loci (Trha25 and Trha27) showed significant departure from Hardy–Weinberg equilibrium after sequential Bonferroni correction (P < 0.0042). No significant linkage disequilibrium between pairs of loci was found. These microsatellite markers provide powerful tools for investigating genetic population structure, population history and conservation management of cutlassfish.

Keywords

Cutlassfish Trichiurus haumela Microsatellites Genetic diversity 

Notes

Acknowledgments

This study was supported by Taishan Scholar Project of Shandong Province, National Public Platform of Science & Technology Information Resources (2005DKA30470-06) and scientific foundation of YSFRI, CAFS (2007-qn-13).

References

  1. Chakraborty A, Aranishi F, Iwatsuki Y (2005) Molecular identification of hairtail species (Pisces:Trichiuridae) based on PCR-RFLP analysis of the mitochondrial 16S rRNA gene. J Appl Genet 46(4):381–385PubMedGoogle Scholar
  2. Chen SL, Xu MY, Ji XS, Yu GC (2004) Cloning and characterization of natural resistance associated macrophage protein (Nramp) cDNA from red sea bream (Pagrus major). Fish Shellfish Immunol 17:305–313. doi: 10.1016/j.fsi.2004.04.003 PubMedCrossRefGoogle Scholar
  3. Chen SL, Liu YG, Xu MY, Li J (2005) Isolation and characterization of polymorphic microsatellite loci from an EST-library of red sea bream (Chrysophrys major) and cross-species amplification. Mol Ecol Notes 5:215–217. doi: 10.1111/j.1471-8286.2005.00880.x CrossRefGoogle Scholar
  4. Claus F (1995) Multilingual illustrated guide to the world’s commercial warm water fish. Fishing News Book, Cambridge, 215 ppGoogle Scholar
  5. Hsu KC, Shih NT, Ni IH, Shao KT (2007) Genetic variation in trichiurus lepturus (perciformes: trichiuridae) in waters off taiwan: several species or cohort contribution. Raffles Bull Zool 14:215–220Google Scholar
  6. Liao X, Shao CW, Tian YS, Chen SL (2007) Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis Günther). Mol Ecol Notes 7(6):1147–1149. doi: 10.1111/j.1471-8286.2007.01812.x CrossRefGoogle Scholar
  7. Luo B (1991) Cutlassfish. In: Fan CQ (ed) Marine fishery biology (in Chinese). Agriculture Press, Beijing, pp 111–160Google Scholar
  8. Ma HY, Chen SL, Liao XL, Xu TJ, Ge JC (2008a) Isolation and characterization of polymorphic microsatellite loci from a dinucleotide-enriched genomic library of obscure puffer (Takifugu obscurus) and cross-species amplification. Conserv Genet. doi: 10.1007/s10592-008-9540-2
  9. Ma HY, Chen SL, Li J, Bi JZ, Xu TJ (2008b) Cloning characterization of three female-specific AFLP markers and development of a reliable PCR-based sex identification method for tongue sole (Cynoglossus semilaevis). Prog Nat Sci (submitted)Google Scholar
  10. Nakamura I, Parin NV (1993) FAO species catalogue, vol 15. Snake mackerels and cutlassfishes of the world (families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails and frostfishes known to date. FAO, RomeGoogle Scholar
  11. Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi: 10.2307/2409177 Google Scholar
  12. Spies IB, Lowe S, Hong Y, Canino MF (2005) Development and characterization of seven novel di-, tri-, and tetranucleotide microsatellite markers in Atka mackerel (Pleurogrammus monopterygius). Mol Ecol Notes 5:469–471. doi: 10.1111/j.1471-8286.2005.00947.x CrossRefGoogle Scholar
  13. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in mirosatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  14. Yang TY, Gao TX (2007) Isozyme analyses of Trichiurus haumela in the Yellow Sea and East China Sea. Mar Fish Res 28(3):44–49Google Scholar
  15. Yang WT, Feng F, Yue GH (2007) Isolation and characterization of microsatellites from a marine foodfish species ribbonfish (Trichiurus haumela). Mol Ecol Notes 7:781–783. doi: 10.1111/j.1471-8286.2007.01700.x CrossRefGoogle Scholar
  16. Yeh FC, Yang RC, Boyle T (1999) POPGENE version 1.31. Microsoft window-bases freeware for population genetic analysis. Available: (www.ualberta.ca/~fyeh/). University of Alberta and the Centre for International Forestry Research
  17. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi: 10.1046/j.0962-1083.2001.01418.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jin-Zhen Bi
    • 1
    • 2
  • Chang-Wei Shao
    • 1
  • Gui-Dong Miao
    • 1
  • Hong-Yu Ma
    • 1
  • Song-Lin Chen
    • 1
  1. 1.Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fisheries SciencesQingdaoChina
  2. 2.College of Marine Life SciencesOcean University of ChinaQingdaoChina

Personalised recommendations