Conservation Genetics

, 10:1209 | Cite as

Population structure and genetic management of Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis)

  • V. L. Pritchard
  • J. L. Metcalf
  • K. Jones
  • A. P. Martin
  • D. E. Cowley
Research Article


The Rio Grande cutthroat trout, Oncorhynchus clarkii virginalis, has declined precipitously over the past century, and currently exhibits a highly fragmented distribution within the Canadian, Pecos and Rio Grande river systems of the western United States. The relationships between populations in the three river drainages, and between O. c. virginalis and the closely related taxa O. c. pleuriticus and O. c. stomias, are not well understood. In order to guide management decisions for the subspecies, we investigated the distribution of variation at 12 microsatellite loci and two regions of the mitochondrial genome. We observed a high level of genetic differentiation between O. c. virginalis populations occupying different headwater streams (global Fst = 0.41). However, we found evidence for previous gene flow within the Rio Grande drainage, indicating that inter-population differentiation may have been exacerbated by the recent effects of population fragmentation. Despite large-scale anthropogenic movement of individuals from the Rio Grande into the Canadian and Pecos, the genetic signature of long-term evolutionary independence between the three drainages has been retained.


Conservation genetics Management unit Oncorhynchus clarkii Microsatellite Salmonid Stocking 



This research was funded by NMDGF through the Federal Aid in Sport Fish Restoration Act, the New Mexico Agricultural Experiment Station, Colorado Division of Wildlife (CDOW), Rocky Mountain National Park and USFWS. Tissue samples were provided by CDOW, NMDGF, USDA Forest Service, Chris Kennedy (USFWS), Jim Melby (CDOW), Dennis Shiozawa and Paul Evans (Monte L. Bean Life Science Museum, Brigham Young University). We thank staff at GIS for technical support.

Supplementary material

10592_2008_9652_MOESM1_ESM.pdf (78 kb)
(PDF 77 kb)


  1. Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv Biol 2:170–184. doi: 10.1111/j.1523-1739.1988.tb00168.x CrossRefGoogle Scholar
  2. Bachhuber FW (1989) The occurrence and paleolimnologic significance of cutthroat trout (Oncorhynchus clarki) in pluvial lakes of the Estancia Valley, central New Mexico. Geol Soc Am Bull 101:1543–1551. doi: 10.1130/0016-7606(1989)101<1543:TOAPSO>2.3.CO;2 CrossRefGoogle Scholar
  3. Behnke RJ (2002) Trout and salmon of North America. Free Press, New YorkGoogle Scholar
  4. Belkhir K, Borsa P, Chiki L, Raufaste N, Bonhomme F (2001) GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  5. Carlsson J, Nilsson J (2001) Effects of geomorphological structures on genetic differentiation among brown trout populations in a northern boreal river drainage. Trans Am Fish Soc 130:36–45. doi: 10.1577/1548-8659(2001)130<0036:EOGSOG>2.0.CO;2 CrossRefGoogle Scholar
  6. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evol Int J Org Evol 32:550–570. doi: 10.2307/2406616 Google Scholar
  7. Chapman RW, Sedberry GR, Koenig CC, Eleby BM (1999) Stock identification of gag, Mycteroperca microlepis, along the southeast coast of the United States. Mar Biotechnol 1:137–146. doi: 10.1007/PL00011761 CrossRefPubMedGoogle Scholar
  8. Ciofi C, Bruford MW (1999) Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Mol Ecol 8(Suppl 1):S17–S30. doi: 10.1046/j.1365-294X.1999.00734.x CrossRefPubMedGoogle Scholar
  9. Conner JV, Suttkus RD (1986) Zoogeography of freshwater fishes of the western Gulf Slope of North America. In: Hocutt CH, Wiley EO (eds) The zoogeography of North American freshwater fishes. John Wiley and Sons, New York, pp 413–456Google Scholar
  10. Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000PubMedGoogle Scholar
  11. Crispo E, Bentzen P, Reznick DN, Kinnison MT, Hendry AP (2006) The relative influence of natural selection and geography on gene flow in guppies. Mol Ecol 15:49–62. doi: 10.1111/j.1365-294X.2005.02764.x CrossRefPubMedGoogle Scholar
  12. Estoup A, Rousset F, Michalakis Y, Cornuet J-M, Adriamange M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 7:339–353. doi: 10.1046/j.1365-294X.1998.00362.x CrossRefPubMedGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  14. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, WashingtonGoogle Scholar
  15. Fumagalli L, Snoj A, Jesenšek D et al (2002) Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Mol Ecol 11:2711–2716. doi: 10.1046/j.1365-294X.2002.01648.x CrossRefPubMedGoogle Scholar
  16. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from:
  17. Gum B, Gross R, Rottmann O, Schröder W, Kühn R (2003) Microsatellite variation in Bavarian populations of European grayling (Thymallus thymallus): Implications for conservation. Conserv Genet 4:659–672. doi: 10.1023/B:COGE.0000006106.64243.e6 CrossRefGoogle Scholar
  18. Hedrick PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evol Int J Org Evol 53:313–318. doi: 10.2307/2640768 Google Scholar
  19. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231. doi: 10.1007/BF01245622 CrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: BAYESIAN inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  21. Keeler-Foster CL (2003) Rio Grande cutthroat trout (Oncorhynchus clarki virginalis): Population genetics and hybridization with introduced rainbow trout (Oncorhynchus mykiss). Ph.D. thesis, New Mexico State UniversityGoogle Scholar
  22. Kinnison MT, Bentzen P, Unwin MJ, Quinn TP (2002) Reconstructing recent divergence: evaluating nonequilibrium population structure in New Zealand chinook salmon. Mol Ecol 11:739–754. doi: 10.1046/j.1365-294X.2002.01477.x CrossRefPubMedGoogle Scholar
  23. Leary RF, Allendorf FW, Phelps SR, Knudsen KL (1987) Genetic divergence among seven subspecies of cutthroat trout and rainbow trout. Trans Am Fish Soc 116:580–587. doi: 10.1577/1548-8659(1987)116<580:GDAIOS>2.0.CO;2 CrossRefGoogle Scholar
  24. Loudenslager EJ, Gall GAE (1980) Geographic patterns of protein variation and subspeciation in the cutthroat trout. Syst Zool 29:27–42. doi: 10.2307/2412624 CrossRefGoogle Scholar
  25. Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534. doi: 10.1111/j.1365-294X.2006.02871.x CrossRefPubMedGoogle Scholar
  26. Metcalf JL, Pritchard VL, Silvestri SM et al (2007) Across the great divide: genetic forensics reveals misidentification of endangered cutthroat trout populations. Mol Ecol 16:4445–4454. doi: 10.1111/j.1365-294X.2007.03472.x CrossRefPubMedGoogle Scholar
  27. Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411. doi: 10.1111/j.1365-294X.1994.tb00080.x CrossRefGoogle Scholar
  28. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, USAGoogle Scholar
  29. Nielsen JL, Sage GK (2002) Population genetic structure in Lahontan cutthroat trout. Trans Am Fish Soc 131:376–388. doi :10.1577/1548-8659(2002)131<0376:PGSILC>2.0.CO;2CrossRefGoogle Scholar
  30. Novinger DC, Rahel FJ (2003) Isolation management with artificial barriers as a conservation strategy for cutthroat tout in headwater streams. Conserv Biol 17:772–781. doi: 10.1046/j.1523-1739.2003.00472.x CrossRefGoogle Scholar
  31. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  32. Peacock MM, Kirchoff VS (2004) Assessing the conservation value of hybridized cutthroat trout populations. Trans Am Fish Soc 133:309–325. doi: 10.1577/03-017 CrossRefGoogle Scholar
  33. Peterson DP, Fausch KD, White DC (2004) Population ecology of an invasion, Effects of brook trout on native cutthroat trout. Ecol Appl 14:754–772. doi: 10.1890/02-5395 CrossRefGoogle Scholar
  34. Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  35. Pritchard VL, Jones K, Cowley DE (2007a) Estimation of introgression in cutthroat trout populations using microsatellites. Conserv Genet 8:1311–1329. doi: 10.1007/s10592-006-9280-0 CrossRefGoogle Scholar
  36. Pritchard VL, Jones K, Cowley DE (2007b) Genetic diversity within fragmented cutthroat trout populations. Trans Am Fish Soc 136:606–623. doi: 10.1577/T06-038.1 CrossRefGoogle Scholar
  37. Pritchard VL, Jones K, Metcalf JL , Martin AP, Wilkinson P, Cowley DE (2007c) Characterization of tetranucleotide microsatellites for Rio Grande cutthroat trout and rainbow trout, and their cross-amplification in other cutthroat trout subspecies. Mol Ecol Notes 7:594–596. doi: 10.1111/j.1471-8286.2007.01695.x CrossRefGoogle Scholar
  38. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  39. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  40. Schmetterling DA, Adams SB (2004) Summer movements within the fish community of a small montane stream. N Am J Fish Manage 24:1163–1172. doi: 10.1577/M03-025.1 CrossRefGoogle Scholar
  41. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  42. Shemai B, Sallenave R, Cowley DE (2007) Competition between hatchery-raised Rio Grande cutthroat trout and wild brown trout. N Am J Fish Manage 27:315–325. doi: 10.1577/M06-046.1 CrossRefGoogle Scholar
  43. Swofford DL (2000) PAUP* phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  44. Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in westslope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Mol Ecol 12:2609–2622. doi: 10.1046/j.1365-294X.2003.01937.x CrossRefPubMedGoogle Scholar
  45. Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol Ecol 8:169–179. doi: 10.1046/j.1365-294X.1999.00547.x CrossRefGoogle Scholar
  46. Thomas RG (1972) The geomorphic evolution of the Pecos River system. Bull Bayl Geol Stud 22:1–40Google Scholar
  47. Weir BS, Cockerham CC (1984) Estimating F statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  48. Young MK (1996) Summer movements and habitat use by Colorado River cutthroat trout in small, montane streams. Can J Fish Aquat Sci 53:1403–1408. doi: 10.1139/cjfas-53-6-1403 CrossRefGoogle Scholar
  49. Young SF, McLellan JG, Shaklee JB (2004) Genetic integrity and microgeographic population structure of westslope cutthroat trout, Oncorhynchus clarki lewisi, in the Pend Oreille Basin in Washington. Environ Biol Fishes 69:127–142. doi: 10.1023/ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. L. Pritchard
    • 1
    • 4
  • J. L. Metcalf
    • 3
  • K. Jones
    • 2
  • A. P. Martin
    • 3
  • D. E. Cowley
    • 1
  1. 1.Department of Fishery & Wildlife SciencesNew Mexico State UniversityLas CrucesUSA
  2. 2.Genetic Identification ServicesChatsworthUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  4. 4.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations