Conservation Genetics

, 10:359 | Cite as

Intra-population genetic diversity of two wheatgrass species along altitude gradients on the Qinghai-Tibetan Plateau: its implication for conservation and utilization

  • Xue-Bing Yan
  • Yu-Xia Guo
  • Chong Zhao
  • Fa-Yang Liu
  • Bao-Rong Lu
Research Article


A fluorescence-based AFLP fingerprinting was applied to investigate genetic diversity in 22 natural populations of two wheatgrasses from Qinghai-Tibetan Plateau at different altitudes: the hexaploid Elymus nutans Griseb and the tetraploid E. burchan-buddae (Nevski) Tzvelev (Poaceae). Five selective primer combinations used in this study generated a total of 637 AFLP fragments across all the samples, with 612 fragments in E. nutans and 570 in E. burchan-buddae. About 45% of the scored fragments were <200 bp and about 13% of the fragments were >400 bp. Results showed that genetic diversity within populations of the two Elymus species increased gradually with the increase in altitudes from the lowest sampling sites (2800 m) and reached a plateau at the medium altitudes, and then started to decrease with the increase in altitudes. Regression analysis demonstrated a clear pattern between the expected heterozygosity (H e) or Shannon index (I) and altitude variation, where the highest H e values (0.3449 for E. nutans and 0.3167 E. burchan-buddae) and I values (0.5123 and 0.4759) were expected at the altitudes 3399 m and 3418 m across all sampling sites, respectively for E. nutans and E. burchan-buddae. In other words, higher genetic diversity was observed in populations occurring at the medium altitudes (3200–3600 m) than those at the low and high altitudes for the two Elymus species. Principal coordinate analysis (PCA) did not show clear association between genetic relationships of populations and their occurrences at a particular altitude. The above results suggest that efforts for conservation and utilization of two wheatgrasses species should focus more on populations occurring at the medium altitudes.


Genetic variation Altitude Elymus Conservation Population genetics 



The International Cooperation Project of National Science and Technology Ministry (No. 2001CB711103) supported this study. We thank Drs. H. Zhou, K. Wang, and S.Y. Wang of Institute of Grassland Sciences, China Agricultural University; Mrs. A.Q. Gong, Y.X. Xu, H. Chang, D. La and H. Li of Grassland Management Bureau of Qinghai Province; and Mr. B. Ning of Grassland Management Station of Maqin County, Qinghai Province, for their assistance in the fieldwork. We are also grateful to Professors C.Z. Wang and K.H. Zan of Henan Agricultural University for the help in the revision of manuscript.


  1. Arnaud-Haond S, Teixeira S, Massa SI et al (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) Populations. Mol Ecol 15:3515–3525PubMedCrossRefGoogle Scholar
  2. Baur B, Raboud C (1988) Life history of the snail Arianta arbustorum along an altitudinal gradient. J Anim Ecol 57:71–87CrossRefGoogle Scholar
  3. Bockelmann AC, Reusch TBH, Bijsma R et al (2003) Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12:505–515PubMedCrossRefGoogle Scholar
  4. Bradshaw AD (1991) The Croonian lecture-genostasis and the limits to evolution. Philos Trans R Soc B 333:289–305CrossRefGoogle Scholar
  5. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  6. Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028–2043CrossRefGoogle Scholar
  7. Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  8. Erich G, Johann JS (2002) Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora 197:203–213Google Scholar
  9. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Essex, EnglandGoogle Scholar
  10. Feng FJ, Wang FY, Li CS (2004) Genetic differentiation of Pinus koraiensis under different altitude conditions in Changbai Mountains. J Northeast For Univ 32:1–3Google Scholar
  11. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UKGoogle Scholar
  13. Gail R, Dennis F, Stuart DM et al (1998) Genome Size is Negatively Correlated with Altitude in Natural Populations of Dactylis glomerata. Ann Bot 82(Supplement A):99–105Google Scholar
  14. George T, Latha J, George V et al (2001) Analysis of phenotypic and genetic variations among populations of Oryza malampuzhaensis show evidence of altitude-dependent genetic changes. Can J Bot 79:1090–1098CrossRefGoogle Scholar
  15. Giang LH, Hong PN, Tuan MS et al (2003) Genetic variation of Avicennia marina (Forsk.) Vierh. (Avicenniaceae) in Vietnam revealed by microsatellite and AFLP markers. Genes Genet Syst 78:399–407CrossRefGoogle Scholar
  16. Hartl L, Seefelder S (1998) Diversity of selected hop cultivars detected by fluorescent AFLPs. Theor Appl Genet 96:112–116CrossRefGoogle Scholar
  17. Heath D, Williams DR (1979) Life at high altitude. London, Edward ArnoldGoogle Scholar
  18. Hoffmann AA, Blows MW (1994) Species borders-ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefGoogle Scholar
  19. Hou XY, Zhang XS (1980) The geographically distributed pattern of the vegetation of China. Science Press, Beijing, pp 731–738Google Scholar
  20. Hsiao JY, Lee SM (1999) Genetic diversity and microgeographic differentiation of Yushan cane (Yushania niitakayamensis; Poaceae) in Taiwan. Mol Ecol 8:263–270CrossRefGoogle Scholar
  21. Jin Y, Lu BR (2003) Sampling strategy for genetic diversity. Biodivers Sci 11:155–161Google Scholar
  22. Korshikov II, Mudrik EA (2006) Elevation-dependent genetic variation of plants and seed embryos in the Crimea Mountain population of Pinus pallasiana D. Don. Russ J Ecol 37:79–83CrossRefGoogle Scholar
  23. Larson SR, Jones TA, Hu ZM et al (2000) Genetic diversity of bluebunch wheatgrass cultivars and a multiple-origin polycross. Crop Sci 40:1142–1147Google Scholar
  24. Larson SR, Cartier E, Mccracken CL et al (2001) Mode of reproduction and amplified fragment length polymorphism variation in purple needlegrass (Nassella pulchra): utilization of natural germplasm sources. Mol Ecol 10:1165–1177PubMedCrossRefGoogle Scholar
  25. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefGoogle Scholar
  26. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398Google Scholar
  27. Li JC, Ke Y, Li BS (1998) The variation of genetic diversity of quercus aquifolioides in different elevations. Acta Bot Sin 40:761–767CrossRefGoogle Scholar
  28. Lu BR (2002) Revision of two Elymus species (Poaceae). Acta Phytotaxon Sin 40:539–545Google Scholar
  29. Lu GP, Nie B (2002) Field evaluation of Elymus nutans under alpine grassland conditions. Pratacult Sci 19:13–15Google Scholar
  30. Maguire TL, Saenger P, Baverstock P et al (2000) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Mol Ecol 9:1853–1862PubMedCrossRefGoogle Scholar
  31. Massa AN, Larson SR, Jensen KB et al (2001) AFLP variation in Bromus section Ceratochloa germplasm of Patagonia. Crop Sci 41:1609–1616Google Scholar
  32. Masuyama S (1996) Progenesis as an adaptive strategy in the annual fern Ceratopteris thalictroides in Japan. Plant Species Biol 11:225–232CrossRefGoogle Scholar
  33. Monte JV, De Nova PJG, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135:233–238PubMedCrossRefGoogle Scholar
  34. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  35. Nei M (1987) Molecular evolutionary genetics. New York, Columbia University PressGoogle Scholar
  36. Peakall R, Smouse P E (2001) GenAlEx V5: Genetic. Analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. Cited 16 Mar 2001
  37. Runnions CJ, Geber MA (2000) Evolution of the self-pollinating flower in Clarkia Xantiana (Onagraceae). I. Size and development of floral organs. Am J Bot 87:1439–1451CrossRefGoogle Scholar
  38. Sabrina R, Sabri S (1999) Genetic diversity in natural Cupressus sempervirens L. populations in Turkey. Biochem Syst Ecol 27:799–814CrossRefGoogle Scholar
  39. Semagn K, Bjornstad A, Stedje B (2003) Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analyses. Genet Resour Crop Evol 50:649–661CrossRefGoogle Scholar
  40. Steven RL, Jones TA, Mccracken CL et al (2003) Amplified fragment length polymorphism in Elymus elymoides, Elymus multisetus, and other Elymus taxa. Can J Bot 81:789–804CrossRefGoogle Scholar
  41. Sun GL, Salomon B (2003) Microsatellite variability and heterozygote deficiency in the arctic-alpine Alaskan wheatgrass (Elymus alaskanus) complex. Genome 46:729–737PubMedCrossRefGoogle Scholar
  42. Sun GL, Diaz O, Salomon B et al (1998) Micro-satellite variation and its comparison with allozyme and RAPD variation in Elymus fibrosus (Schrenk) Tzvel. (Poaceae). Hereditas 129:275–282CrossRefGoogle Scholar
  43. Sun GL, Díaz O, Salomon B et al (1999) Genetic diversity in Elymus caninus as revealed by isozyme, RAPD and micro-satellite markers. Genome 42:420–431PubMedCrossRefGoogle Scholar
  44. Sun GL, Díaz O, Salomon B et al (2001) Genetic diversity and structure in a natural Elymus caninus population from Denmark based on microsatellite and isozyme analysis. Plant Syst Evol 227:235–244CrossRefGoogle Scholar
  45. Sun GL, Salomon B, Bothmer RV (2002) Micro-satellite polymorphism and genetic differentiation in three Norwegian populations of Elymus alaskanus (Poaceae). Plant Syst Evol 234:101–110CrossRefGoogle Scholar
  46. Sun BG, Long RJ, Wang CT (2007) A study on the plant population phenology in Qinhai-Tibet Plateau Kobrecia pygmaea meadow. Pratacult Sci 24:16–20Google Scholar
  47. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4417PubMedCrossRefGoogle Scholar
  48. Vuylsteke M, Mank R, Antonise R et al (1999) Two high-density AFLP(R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  49. Wang WY, Wang QJ, Li SX et al (2006) Distribution and species diversity of plant communities along transect on the northeastern Tibetan Plateau. Biodivers Conserv 15:1811–1828CrossRefGoogle Scholar
  50. Yan TF, Yan XF, Zu YG (1999) A primaryly disscuss on the adaptive mechanism at different altitude level of rhodiola sachalinensis population. Bull Bot Res 19:201–206Google Scholar
  51. Yan XB, Guo YX, Zhou H et al (2006) Genetic patterns of ten Elymus species from Tibetan and Inner Mongolian Plateaus. Grass Forage Sci 61:398–404CrossRefGoogle Scholar
  52. Yeh FC, Yang R, Boyle TJ et al (2000) PopGene32, Microsoft Windowsbased freeware for population. Genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  53. Zhao LF, Li S, Pan Y et al (2001) Population differentiation of Psathyrostachys huashanina along an altitudinal gradient detected by random amplified polymorphic DNA. Acta Bot Boreali-occidentalia Sin 21:391–400Google Scholar
  54. Zhao NX, Gao YB, Wang JL et al (2006) RAPD diversity of Stipa grandis populations and its association with some ecological Factors. Acta Ecol Sin 6:1312–1319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xue-Bing Yan
    • 1
    • 2
  • Yu-Xia Guo
    • 2
  • Chong Zhao
    • 3
  • Fa-Yang Liu
    • 3
  • Bao-Rong Lu
    • 1
  1. 1.Key Laboratory of Education Ministry for Biodiversity Science and Ecological Engineering, Institute of Biodiversity ScienceFudan UniversityShanghaiChina
  2. 2.College of Animal and Veterinary ScienceHenan Agricultural UniversityZhengzhouChina
  3. 3.College of Life ScienceGansu Agricultural UniversityLanzhouChina

Personalised recommendations