Conservation Genetics

, Volume 10, Issue 2, pp 257–267 | Cite as

Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan

  • Masanori Honjo
  • Naoko Kitamoto
  • Saneyoshi Ueno
  • Yoshihiko Tsumura
  • Izumi Washitani
  • Ryo Ohsawa
Research Article


To promote programs for the conservation and restoration of the endangered species Primula sieboldii, we examined genetic variation at eight microsatellite loci among and within 32 remnant wild populations throughout Japan. Total allelic diversity within a population was higher in larger populations, but not so after rarefaction adjustment. The positive relationship between population size and the inbreeding coefficient may suggest that more heterozygous genets tend to survive the habitat contraction possibly because of the higher fitness associated with heterozygosity. By principal coordinate analysis and Bayesian analysis, we detected four genetic groups (Hokkaido, northern Honshu, central Honshu, and western Japan), which could be recognized as management units of P. sieboldii. If supplementation with plants from other populations were planned, it should be conducted among populations which belong to the same management unit and which are likely to represent the same adaptive variation.


Chloroplast DNA (cpDNA) Conservation unit Genetic differentiation Genetic rescue Restoration 



We express our sincere thanks to M. Ajima, S. Araki, M. Haga, H. Hata, M. Ide, Y. Kameyama, T. Kamijo, the Karuizawa Primrose Conservation Society, Y. Kato, K. Kida, T. Konishi, T. Kuwabara, K. Kuwata, M. Maeda, C. Matsumura, M. Mochida, H. Nakagaito, C. Nakano, M. Nakamura, J. Nishihiro, S. Ogawa, K. Oh, T. Ohmori, N. Ohtaki, T. Omozaki, A. Shinohara, K. Shirakawa, A. Suzuki, T. Suzuki, Y. Takahashi, Y. Takeda, T. Tsuchiya, S. Yamamoto, K. Yamanaka, J. Yokoyama, M. Yoshii, and Y. Yoshioka for collection of plant materials, and to anonymous reviewers for their comments for improving this paper. We also thank T. Kado and the members of the Laboratory of Plant Breeding at the University of Tsukuba for their assistance. This work was partly supported by the Fundamental Research Fund for Future Environment from the Japan Ministry of Environment.


  1. Bekessy SA, Ennos RA, Burgman MA, Newton AC, Ades PK (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275CrossRefGoogle Scholar
  2. Cai HW, Wang XK, Morishima H (2004) Comparison of population genetic structures of common wild rice (Oryza rufipogon Griff.), as revealed by analyses of quantitative traits, allozymes, and RFLPs. Heredity 92:409–417PubMedCrossRefGoogle Scholar
  3. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  4. Demauro MM (1993) Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550CrossRefGoogle Scholar
  5. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  6. Environment Agency of Japan (2000) Threatened wildlife of Japan, red data book, vascular plants. Environment Agency of Japan, Tokyo (in Japanese)Google Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  8. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  9. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  10. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedGoogle Scholar
  11. Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM (2006) Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768PubMedCrossRefGoogle Scholar
  12. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Scholar
  13. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186CrossRefGoogle Scholar
  14. Hedrick P (2005) ‘Genetic restoration’: a more comprehensive perspective than ‘genetic rescue’. Trends Ecol Evol 20:109PubMedCrossRefGoogle Scholar
  15. Hogbin PM, Peakall R (1999) Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conserv Biol 13:514–522CrossRefGoogle Scholar
  16. Honjo M, Ueno S, Tsumura Y, Handa T, Washitani I, Ohsawa R (in press) Tracing the origins of stocks of the endangered species Primula sieboldii using nuclear microsatellites and chloroplast DNA. Conserv GenetGoogle Scholar
  17. Honjo M, Ueno S, Tsumura Y, Washitani I, Ohsawa R (2004) Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii. Biol Conserv 120:215–224CrossRefGoogle Scholar
  18. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155CrossRefGoogle Scholar
  19. Isagi Y, Honjo M, Washitani I (2001) Development of microsatellite markers for Primula sieboldii using degenerate oligonucleotide-primed PCR-amplified DNA. Mol Ecol Notes 1:22–24CrossRefGoogle Scholar
  20. Iwata H (2004) PCO ver. 1.0. Available from Scholar
  21. Kery M, Matthies D, Spillman H (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30CrossRefGoogle Scholar
  22. Kitamoto N (2005) A reproductive biological study on the maintenance mechanism of genetic diversity of an endangered plant, Primula sieboldii. Doctoral dissertation, University of Tsukuba (in Japanese)Google Scholar
  23. Kitamoto N, Honjo M, Ueno S, Takenaka A, Tsumura Y, Washitani I, Ohsawa R (2005a) Spatial genetic structure among and within populations of Primula sieboldii growing beside separate streams. Mol Ecol 14:149–157CrossRefGoogle Scholar
  24. Kitamoto N, Ueno S, Tsumura Y, Washitani I, Ohsawa R (2005b) Development of microsatellite markers in Primula sieboldii E. Morren, a threatened herb. Jpn J Conserv Ecol 10:47–51 (in Japanese with English summary)Google Scholar
  25. Luijten SH, Dierick A, Oostermeijer GB, Rajimann LEL, den Nijs HCM (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self-incompatible perennial (Arnica montana) in the Netherlands. Conserv Biol 14:1776–1787CrossRefGoogle Scholar
  26. Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142PubMedCrossRefGoogle Scholar
  27. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  28. Matsumura C, Washitani I (2000) Effects of population size and pollinator limitation on seed-set of Primula sieboldii populations in a fragmented landscape. Ecol Res 15:307–322CrossRefGoogle Scholar
  29. Mckay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291CrossRefGoogle Scholar
  30. Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269PubMedCrossRefGoogle Scholar
  31. Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  32. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  33. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  34. Nagai M, Watanabe A, Nishihiro J, Washitani I (2006) The mating system and inbreeding depression. In: Washitani I (ed) Conservation molecular genetic ecology on Primula sieboldii. University of Tokyo Press, Tokyo, pp 240–258 (in Japanese)Google Scholar
  35. Nei M, Roychoudhury AK (1974) Sampling variance of heterozygosity and genetic distance. Genetics 76:379–390PubMedGoogle Scholar
  36. Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145PubMedCrossRefGoogle Scholar
  37. Ohi T, Wakabayashi M, Wu S, Murata J (2003) Phylogeography of Stachyurus praecox (Stachyuraceae) in the Japanese archipelago based on chloroplast DNA haplotypes. J Jpn Bot 78:1–14Google Scholar
  38. Ohshima K (1990) The history of straits around the Japanese islands in the late-Quaternary. Quat Res 29:193–208 (in Japanese with English summary)CrossRefGoogle Scholar
  39. Oostermeijer JGB, van Eijck MW, van Leeuwen NC, den Nijs JCM (1995) Analysis of the relationship between allozyme heterozygosity and fitness in the rare Gentiana pneumonanthe L. J Evol Biol 8:739–759CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  41. Pritchard JK, Wen W (2003) Documentation for Structure Software: Version 2. http://pritch.bsd.uchicago.eduGoogle Scholar
  42. Rajimann LEL, van Leeuwen NC, Kersten R, Oostermeijer JGB, den Nijs HCM, Menken SBJ (1994) Genetic variation and outcrossing rate in relation to population size in Gentiana pneumonanthe L. Conserv Biol 8:1014–1026CrossRefGoogle Scholar
  43. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103PubMedGoogle Scholar
  44. Robichaux RH, Friar EH, Mount DW (1997) Molecular genetic consequences of a population bottleneck associated with reintroduction of the Mauna Kea silversword (Argyroxiphium sandwicense ssp. sandwicense [Asteraceae]). Conserv Biol 11:1140–1146CrossRefGoogle Scholar
  45. Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449PubMedCrossRefGoogle Scholar
  46. Schaal BA, Levin DA (1976) The demographic genetics of Liatris cylindracea Michx. (Compositae). Am Nat 110:191–206CrossRefGoogle Scholar
  47. Schneider S, Roessli D, Excoffier L (2000) Arlequin, version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, SwitzerlandGoogle Scholar
  48. Soltis PS, Gitzendanner MA (1999) Molecular systematics and the conservation of rare species. Conserv Biol 13:471–483CrossRefGoogle Scholar
  49. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374PubMedGoogle Scholar
  50. Steinger T, Haldimann P, Leiss KA, Muller-Scharer H (2002) Does natural selection promote population divergence? A comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits. Mol Ecol 11:2583–2590PubMedCrossRefGoogle Scholar
  51. Tomaru N, Mitsutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241–251CrossRefGoogle Scholar
  52. Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636CrossRefGoogle Scholar
  53. Ueno S, Kitamoto N, Ohsawa R, Tsumura Y, Washitani I (2005) Nine additional microsatellite markers for Primula sieboldii E. Morren. Conserv Genet 6:1063–1064CrossRefGoogle Scholar
  54. Ueno S, Tsumura Y, Washitani I (2003) Development of microsatellite markers in Primula sieboldii E. Morren, a threatened Japanese perennial herb. Conserv Genet 4:809–811CrossRefGoogle Scholar
  55. Walter R, Epperson BK (2001) Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Mol Ecol 10:103–111PubMedCrossRefGoogle Scholar
  56. Washitani I, Kabaya H (1988) Germination responses to temperature responsible for the seedling emergence seasonability of Primula sieboldii E. Morren in its natural habitat. Ecol Res 3:9–20CrossRefGoogle Scholar
  57. Washitani I, Kato M, Nishihiro J, Suzuki K (1995) Importance of queen bumble bees as pollinators facilitating inter-morph crossing in Primula sieboldii. Plant Sp Biol 9:169–176CrossRefGoogle Scholar
  58. Washitani I, Namai H, Osawa R, Niwa M (1991) Species biology of Primula sieboldii for the conservation of its lowland-habitat population: I. Inter-clonal variations in the flowering phenology, pollen load and female fertility components. Plant Sp Biol 6:27–37CrossRefGoogle Scholar
  59. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  60. Yamazaki T (1993) Primula. In: Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (eds) Flora of Japan 3a. Kodansha, Tokyo, pp 87–94Google Scholar
  61. Yang RC (1998) Estimating hierarchical F-statistics. Evolution 52:950–956CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Masanori Honjo
    • 1
    • 3
  • Naoko Kitamoto
    • 1
  • Saneyoshi Ueno
    • 2
  • Yoshihiko Tsumura
    • 2
  • Izumi Washitani
    • 3
  • Ryo Ohsawa
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Forest GeneticsForestry and Forest Products Research InstituteTsukubaJapan
  3. 3.Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan

Personalised recommendations