Conservation Genetics

, Volume 8, Issue 1, pp 239–243 | Cite as

Genetic variability in European black grouse (Tetrao tetrix)

  • Jacob Höglund
  • Jobs Karl Larsson
  • Hugh A. H. Jansman
  • Gernot Segelbacher
Brief Communication


We studied microsatellite genetic variation in 14 different geographic populations of black grouse (Tetrao tetrix) across the European range. Populations were grouped in three different fragmentation categories: isolated, contiguous and continuous, respectively. Genetic diversity, measured as observed heterozygosity (H O), expected heterozygosity (H E) and allelic richness, were lower in isolated populations as compared to the other two categories that did not differ amongst one another. These results imply that lowered genetic variability in black grouse populations is negatively affected by population isolation. Our results suggest that the connectivity of small and isolated populations in Western Europe should be improved or else these face an increased risk of extinction due to genetic and demographic stochasticity.


Microsatellite Genetic variation Fragmentation Isolation Population size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are indebted to many people who assisted in obtaining samples for this study (R.V. Alatalo, D. Baines, T. Ellison, G. Gruber, J.A. Kålås, A. Schmalzer, I. Storch, A. Zeitler, N. Zbinden, G. Kilzer, K-H. Kolb and F. Müller). Ursula Bornhauser and Gunilla Olsson assisted in the lab. The work was supported by a grant from the Swedish National Research Council (VR) to JH and by a fellowship from the Max-Planck Society and a grant from ESF to GS.


  1. Belkhir K (2005) GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  2. BirdLife International (2004) Birds in Europe. Populations densities, trends and conservation status. BirdLife Conservation Series 12Google Scholar
  3. Ferrière R, Dieckmann U, Couvet D (eds) (2004) Evolutionary Conservation Biology. Cambridge Univ Press, CambridgeGoogle Scholar
  4. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Cons Biol 10:1500–1508CrossRefGoogle Scholar
  5. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge Univ Press, CambridgeGoogle Scholar
  6. Frankham R, Ralls K (1998) Conservation Biology-Inbreading leads to extinction. Nature 392:441–442Google Scholar
  7. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from
  8. Hancock M, Baines D, Gibbons D, Etheridge B, Shepard M (1999) Status of male black grouse Tetrao tetrix in Britain in 1995–1996. Bird Study 46:1–15CrossRefGoogle Scholar
  9. Hogg JT, Forbes SH, Steele BM, Luikhart G (2006) Genetic rescue of an insular population of large mammals. Proc Roy Soc (Lond) B DOI: 10.1098/rspb.2006.3477Google Scholar
  10. Hoglund J, Alatalo RV, Lundberg A, Lindell J (1999) Microsatelite markers reveals the potential for kin selection on male black grouse leks. Proc Roy Soc Lond b 266: 813–816Google Scholar
  11. Holst-Jørgensen B (2000) The black grouse in Denmark 1978–2000. Cahiers d’Ethologie 20:505–508Google Scholar
  12. Jansman HAH, Niewold FJJ, Bovenschen J, Koelewijn HP (2004) Korhoenders op de Sallandse Heuvelrug. Een populatie-genetische analyse van het wel en wee van Netherlands laatste populatie. Alterra-rapport 1122. Alterra, WageningenGoogle Scholar
  13. Loeschcke V, Tomiuk J, Jain SK (eds) (1994) Conservation Genetetics. Birkhäuser Verlag, BaselGoogle Scholar
  14. Nei M (1987) Molecular evolutionary genetics. Columbia Univ Press, New YorkGoogle Scholar
  15. Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304Google Scholar
  16. Raymond M, Rousset F (1995) Genepop (Version 3.1d): population genetics software for exact tests and ecumenism. J. Heredity 86:248–249Google Scholar
  17. R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL Google Scholar
  18. Segelbacher G, Paxton R, Steinbrueck G, Trontelj P, Storch I (2000) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935PubMedCrossRefGoogle Scholar
  19. Segelbacher G (2002) Noninvasive genetic analysis in birds: testing reliability of feather samples. Mol Ecol Notes 2:367–369CrossRefGoogle Scholar
  20. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780PubMedCrossRefGoogle Scholar
  21. Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–108CrossRefGoogle Scholar
  22. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  23. Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Jacob Höglund
    • 1
  • Jobs Karl Larsson
    • 1
  • Hugh A. H. Jansman
    • 2
  • Gernot Segelbacher
    • 3
    • 4
  1. 1.Population Biology, Department of Ecology and EvolutionEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
  2. 2.AlterraWageningenThe Netherlands
  3. 3.Max Planck Institute for OrnithologyVogelwarte RadolfzellGermany
  4. 4.Department of Wildlife Ecology and ManagementUniversity FreiburgFreiburgGermany

Personalised recommendations