Skip to main content
Log in

Mating system and fine-scale spatial genetic structure of Solanum lycocarpum St.Hil. (Solanaceae) in the Brazilian Cerrado

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Restricted gene dispersion – resulting from both self-pollination and limited capability of pollen migration, as well as seed dispersion at short distances – has been considered the main reason for spatial genetic structuring in plant populations. This study evaluated the intrapopulation genetic structure and the mating system in four populations of Solanum lycocarpum, a woody bush occurring in Brazilian Cerrado vegetation. Two hundred and twenty-four individuals were genotyped through five nuclear SSR loci (30 alleles) and six cpSSR loci (82 haplotypes). The study evidenced that the species mates predominantly by outcrossings \((\hat{t}_{\rm m}\sim1.00)\), that biparental inbreeding is not common, and that there are almost 10 trees participating as pollen donors per mother-tree. The populations were formed by many mother lineages, indicating efficient seed dispersion by the fauna and the occurrence of multiple foundation events. Spatial genetic structure was observed in three populations (average Sp=0.0184 ± 0.0030) and it resulted from both restricted seed dispersion and from vegetative reproduction. During the collection of seeds for ex situ conservation, seeds must be gathered from 150 to 200 mother trees, so that the effective size of 500 individuals is retained. The sampling must comprise the biggest possible number of populations in a wide area to enable the maintenance of the biggest possible haplotypic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich PR, Hamrick JL, Chavarriage P, Kochert G (1998) Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol. Ecol. 7: 933–944

    Article  PubMed  CAS  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in Angiosperms. In: Jones CE, Little RJ (eds) Handbook of Experimental Pollination Biology. Van Nostrand & Reinhold Scientific and Academic Editions, New York, pp. 73–113

    Google Scholar 

  • Buso GSC, Brondani RV, Amaral ZP de S, Reis AMM, Ferreira ME (2000) Desenvolvimento de primers SSR para análise genética de pimentas e pimentões (Capsicum spp.) utilizando biblioteca genômica enriquecida, Boletim de Pesquisa n° 15. Embrapa/Cenargen, Brasília

    Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp. Biochem. Physiol. B 126: 455–476

    Article  PubMed  CAS  Google Scholar 

  • Chaves-Filho JT, Stacciarini-Seraphin E (2001) Alteração do potencial osmótico e do teor de carboidratos solúveis em plantas jovens de lobeira (Solanum lycocarpum St.Hil) em resposta ao estresse hídrico. Rev. Bras. Bot. 24:199–204

    Article  Google Scholar 

  • Cockerham CC (1969) Variance of gene frequencies. Evolution 23: 72–84

    Article  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001a) High resolution microsatellite based analysis of the mating system allows the detection of biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 86: 60–67

    Article  CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001b) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol. Ecol. 10: 349–356

    Article  CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2003) Evidences for multiple maternal lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequences and microsatellite haplotype variation. Mol. Ecol. 12: 105–115

    Article  PubMed  CAS  Google Scholar 

  • Courtenay O (1994) Conservation of the maned wolf: fruitful relations in a changing environment. Canid News 2: 41–43

    Google Scholar 

  • Creste C, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 19: 299–306

    CAS  Google Scholar 

  • Cruz GL (1982) Dicionário das plantas úteis do Brasil. 2nd edn. Civilização Brasileira, Rio de Janeiro

    Google Scholar 

  • Dall’Agnol R, Von Poser GL (2000) The use of complex polysaccharides in the management of metabolic diseases: the case of Solanum lycocarpum fruits. J. Ethnopharmacol. 71: 337–341

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JS (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15

    Google Scholar 

  • Elias SM, Assis RM, Stacciarini-Seraphin E, Rezende MH (2003) Anatomia foliar em plantas jovens de Solanum lycocarpum St.Hil. (Solanaeceae). Rev. Bras. Bot. 26: 169–174

    Article  Google Scholar 

  • Epperson BK (1990) Spatial patterns of genetic variation within plant populations. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, pp. 229–253

    Google Scholar 

  • Epperson BK (1995) Spatial distributions of genotypes under isolation by distance. Genetics 140: 1431–1440

    PubMed  CAS  Google Scholar 

  • González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater JM, Gil L, Alía R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor. Appl. Genet. 104: 1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Hall P, Walker S, Bawa K (1996) Effect of forest fragmentation on genetic diversity and mating system in a tropical tree, Pithecellobium elegans. Conserv. Biol. 10: 757–768

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2: 618–620

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation and population genetic models. Heredity 83: 145–154

    Article  PubMed  Google Scholar 

  • Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22: 335–355

    Article  Google Scholar 

  • Hoffmann WA (1998) Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. J. Appl. Ecol. 35: 422–433

    Article  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13: 201–228

    Article  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11: 424–429

    Article  Google Scholar 

  • Lacerda DR, Acedo MDP, Lemos Filho JP, Lovato MB (2001) Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoideae), a tropical tree from the Brazilian Cerrado. Mol. Ecol. 10: 1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (1981) Dispersal versus gene flow in plants. Ann. Missouri Bot. Gard. 68: 233–253

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allele data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://www.lewis.eeb.uconn.edu/lewishome/software.html

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understorey shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82: 1420–1425

    Article  Google Scholar 

  • Lombardi JA, Motta-Junior JC (1993) Seed dispersal of Solanum lycocarpum St. Hil. (Solanaceae) by the maned wolf, Chrysocyon brachyurus Illiger (Mammalia, Canidae). Ciência e Cultura 45: 126–127

    Google Scholar 

  • Lorenzi H (1998) Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum, Nova Odessa

    Google Scholar 

  • Lorenzi H (2000) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. 3rd edn. Plantarum, Nova Odessa

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15: 65–95

    Article  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol. Evol. 10: 198–202

    Article  Google Scholar 

  • Motta-Junior JC, Martins K (2002) The Frugivorous diet of the maned wolf, Chrysocyon brachyurus in Brazil: ecology and conservation. In: Levey DJ, Silva WR, Galetti M (eds) Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI Publishing, Wallingford, pp. 291–303

    Google Scholar 

  • Motta-Junior JC, Talamoni AS, Lombardi JA, Simokomaki K (1996) Diet of maned wolf, Chrysocyon brachyurus, in central Brazil. J. Zool. 240: 277–284

    Article  Google Scholar 

  • Oliveira-Filho AT, Oliveira LCA (1988) Biologia floral de uma população de Solanum lycocarpum St Hil (Solanaceae) em Lavras, MG. Rev. Bras. Bot. 11: 23–32

    Google Scholar 

  • Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535–538

    Article  CAS  Google Scholar 

  • Pijl LV (1972) Principles of Dispersal in Higher Plants. 2ndedn. Springer Verlag, New York

    Google Scholar 

  • Pinto FS (1998) Efeitos da dispersão de sementes por animais e dos fatores edáficos sobre a germinação, crescimento e sobrevivência das plântulas de lobeira, Solanum lycocarpum. Master Thesis, Universidade de Brasília, Brasília, Brazil

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43: 848–859

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221–228

    Article  PubMed  Google Scholar 

  • Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequency using n independent loci. Heredity 47: 35–52

    Google Scholar 

  • Rizzini CT, Heringer EP (1962) Studies on the underground organs of trees and shrubs from some southern Brazilian savannas. An. Acad. Bras. Cien. 34: 235–247

    Google Scholar 

  • Rodrigues FHG (2002) Biologia e conservação do lobo-guará na Estação Ecológica de Águas Emendadas, DF. Master Thesis, Universidade Estadual de Campinas, Campinas, Brazil

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistic under isolation by distance. Genetics 145: 1219–1228

    PubMed  CAS  Google Scholar 

  • Sebbenn AM (2003) Tamanho efetivo para conservação ex situ de espécies arbóreas com sistema misto de reprodução. Rev. Inst. Flor. Sao Paulo 15: 147–162

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16: 393–430

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561–573

    Article  PubMed  Google Scholar 

  • Stenberg P, Lundmark M, Saura A (2003) MLGSim: a program for detecting clones using a simulation approach. Mol. Ecol. Notes 3: 329–331

    Article  CAS  Google Scholar 

  • Telles MPC, Diniz-Filho JAF, Coelho ASG, Chaves LJ (2001a) Autocorrelação especial das freqüências alélicas em subpopulações de cagaiteira (Eugenia dysenterica DC., Myrtaceae) no sudeste de Goiás. Rev. Bras. Bot. 24: 145–154

    Article  Google Scholar 

  • Telles MPC, Silva RSM, Chaves LJ, Coelho ASG, Diniz-Filho JAF (2001b) Divergência entre subpopulações de cagaiteira (Eugenia dysenterica) em resposta a padrões edáficos e distribuição espacial. Pesqui. Agropec. Bras. 36: 1387–1394

    Google Scholar 

  • Telles MPC, Valva FD, Bandeira LF, Coelho ASG (2003) Caracterizaç ão genética de populações naturais de araticunzeiro (Annona crassiflora Mart. – Annonaceae) no Estado de Goiás. Rev. Bras. Bot. 16: 123–129

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13: 921–935

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genome of dicotyledonous angiosperms. Genome 42: 9–19

    Article  PubMed  CAS  Google Scholar 

  • White GM, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol. Ecol. 8: 1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28: 139–156

    PubMed  CAS  Google Scholar 

  • Zucchi MI, Brondani RPV, Pinheiro JB, Chaves LJ, Coelho ASG, Vencovsky R (2003) Genetic structure and gene flow in Eugenia dysenterica DC in the Brazilian Cerrado utilizing SSR markers. Genet. Mol. Biol. 26: 449–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We specially thank Prof. Márcio Elias Ferreira (EMBRAPA Genetic Research and Biotechnology) by providing nSSR primer sequences and Prof. Roland Venconvsky (ESALQ-USP) by assistance in statistical analysis. We also thank the staff of the Laboratório de Reprodução e Genética de Espécies Arbóreas (LARGEA-ESALQ/USP), especially Elza Ferraz, Andréia Moreno and Gabriela Defávari for the continued support in the laboratory. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP/Brazil). K. Martins has received a Ph.D. fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, K., Chaves, L.J., Buso, G.S.C. et al. Mating system and fine-scale spatial genetic structure of Solanum lycocarpum St.Hil. (Solanaceae) in the Brazilian Cerrado. Conserv Genet 7, 957–969 (2006). https://doi.org/10.1007/s10592-006-9140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9140-y

Key words

Navigation