Advertisement

Conservation Genetics

, Volume 7, Issue 5, pp 705–716 | Cite as

Influence of inbreeding depression on a lake population of Nymphoides peltata after restoration from the soil seed bank

  • Shinichi Takagawa
  • Izumi Washitani
  • Ryuji Uesugi
  • Yoshihiko Tsumura
Article

Abstract

The negative effects of inbreeding depression on fragmented small populations are likely to be expressed more strongly after restoration efforts if regeneration processes have been highly restricted in degraded habitats. We examined the potential influences of inbreeding depression on a population of Nymphoides peltata (Menyanthaceae) restored from the remnant soil seed bank. A hand-pollination experiment demonstrated self-compatibility of a single remaining homostyle genet and significant inbreeding depression in selfed progeny, especially in parameters related to seedling growth (\(\updelta=0.5\)–0.6 for biomass, and \(\updelta=0.3\)–0.4 for relative growth rate). Our genetic analysis indicated that the presumed number of parents contributing to the current soil seed bank was only 2–8 genets and that a single sib-family dominated at each of three sampling sites. The results also showed that the selfed progeny of the homostyle genet were overwhelmingly dominant at two sites (86.8 and 94.7%). As a result, the growth performance of the seed bank seedlings was significantly reduced, to a level as low as that of the selfed progeny. Active restoration efforts to minimize the negative effects of the genetic bottleneck and continuous monitoring based on genetic and demographic study are recommended.

Key words

bottleneck inbreeding depression microsatellite offspring fitness restoration soil seed bank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the Kasumigaura River Office of MLIT (Ministry of Land, Infrastructure and Transport, Government of Japan) and the Japan Water Agency for permitting the use of plant materials and their experiment station for our hand-pollination experiment. We also thank J. Nishihiro, F. Ishihama, M. Honjo, and two anonymous reviewers for their valuable comments on the manuscript. This research was partly supported by a Grant-in-Aid for Fellows of the Japan Society for the Promotion of Science (17-52322).

References

  1. Aparicio A, Guisande R (1997). Replenishment of the endangered Echinospartum algibicum (Genisteae, Fabaceae) from the soil seed bank. Biol. Conserv. 81:267–273CrossRefGoogle Scholar
  2. Balloux F, Amos W, Coulson T (2004). Does heterozygosity estimate inbreeding in real populations? Mol. Ecol. 13:3021–3031CrossRefPubMedGoogle Scholar
  3. Barrett SC, Kohn JR (1991). Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In: Falk DA, Holsinger KE (eds). Genetics and Conservation of Rare Plants. Oxford University Press, New York, pp. 3–30Google Scholar
  4. Bataillon TM, David JL, Schoen DJ (1996). Neutral genetic markers and conservation genetics: Simulated germplasm collections. Genetics 144:409–417PubMedGoogle Scholar
  5. Charlesworth D, Charlesworth B (1987). Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18:237–268CrossRefGoogle Scholar
  6. Cornuet JM, Luikart G (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  7. Dudash MR (1990). Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia angularis L (Gentianaceae): A comparison in three environments. Evolution 44:1129–1139CrossRefGoogle Scholar
  8. Eckert CG, Barrett SCH (1994). Post-pollination mechanisms and the maintenance of outcrossing in self-compatible, tristylous, Decodon verticillatus (Lythraceae). Heredity 72:396–411Google Scholar
  9. Environment Agency of Japan (2000) Threatened wildlife of Japan—Red data book, 2nd edn. Vascular plants, vol. 8. Japan Wildlife Research Center, Tokyo.Google Scholar
  10. Fischer M, Matthies D (1998). Experimental demography of the rare Gentianella germanica: Seed bank formation and microsite effects on seedling establishment. Ecography 21:269–278CrossRefGoogle Scholar
  11. Frankham R (1995). Conservation genetics. Annu. Rev. Genetics 29:305–327CrossRefGoogle Scholar
  12. Friar EA, Ladoux T, Roalson EH, Robichaux RH (2000). Microsatellite analysis of a population crash and bottleneck in the Mauna Kea silversword, Argyroxiphium sandwicense ssp. sandwicense (Asteraceae), and its implications for reintroduction. Mol. Ecol. 9:2027–2034CrossRefPubMedGoogle Scholar
  13. Glück H (1924). Biologische und morphologishe Untersuchungen über Wasser- und Sumpfgewächse. IV. Untergetauchte und Schwimmblattflora. Gustav Fischer, JenapGoogle Scholar
  14. Goodnight KF, Queller DC (1999). Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8:1231–1234CrossRefPubMedGoogle Scholar
  15. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (ver 2.9.3). Available from 〈http://www.2.unil.ch/popgen/softwares/fstat.htm〉.Google Scholar
  16. Hill WG, Robertson A (1966). The effect of linkage on limits to artificial selection. Genet. Res. 8:269–294PubMedCrossRefGoogle Scholar
  17. Hoffman AA, Parsons PA (1997). Extreme Environmental Change and Evolution. Cambridge University Press, CambridgeGoogle Scholar
  18. Hufford KM, Mazer SJ (2003). Plant ecotypes: Genetic differentiation in the age of ecological restoration. Trends Ecol. Evol. 18:147–155CrossRefGoogle Scholar
  19. Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70CrossRefGoogle Scholar
  20. Keller LF, Waller DM (2002). Inbreeding effects in wild populations. Trends Ecol. Evol. 17:230–241CrossRefGoogle Scholar
  21. Kirkpatrick M, Jarne P (2000). The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155:154–167CrossRefPubMedGoogle Scholar
  22. Koch M, Huthmann M, Bernhardt KG (2003). Cardamine amara L. (Brassicaceae) in dynamic habitats: Genetic composition and diversity of seed bank and established populations. Basic Appl. Ecol. 4:339–348CrossRefGoogle Scholar
  23. Konovalov DA, Manning C, Henshaw MT (2004). KINGROUP: A program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol. Ecol. Notes 4:779–782CrossRefGoogle Scholar
  24. Lande R (1994). Risk of population extinction from fixation of new deleterious mutations. Evolution 48:1460–1469CrossRefGoogle Scholar
  25. Lande R (1995). Mutation and conservation. Conserv. Biol. 9:782–791CrossRefGoogle Scholar
  26. Lande R, Schemske DW, Schultz ST (1994). High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations. Evolution 48:965–978CrossRefGoogle Scholar
  27. Lande R, Shannon S (1996). The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437CrossRefGoogle Scholar
  28. Lenssen JP, Dolle GE, Blom CWPM (1998). The effect of flooding in the recruitment of reed marsh and tall forb plant species. Plant Ecol. 139:13–23CrossRefGoogle Scholar
  29. Levin DA (1990). The seed bank as a source of genetic novelty in plants. Am. Nat. 135:563–572CrossRefGoogle Scholar
  30. Luijten SH, Dierick A, Gerard J, Oostermeijer JGB, Raijmann LEL, den Nijs HCM (2000). Population size, genetic variation, and reproductive success in a rapidly declining, self-incompatible perennial (Arnica montana) in The Netherlands. Conserv. Biol. 14:1776–1787CrossRefGoogle Scholar
  31. Lynch M, Conery J, Burger R (1995). Mutation accumulation and extinction of small populations. Am. Nat. 146:489–518CrossRefGoogle Scholar
  32. Madsen T, Shine R, Olsson M, Wittzell H (1999). Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  33. Mahy G, Vekemans X, Jacquemart AL (1999). Patterns of allozymic variation within Calluna vulgaris populations at seed bank and adult stages. Heredity 82:432–440CrossRefPubMedGoogle Scholar
  34. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7:639–655CrossRefPubMedGoogle Scholar
  35. Marui H, Washitani I (1993). Heterostyly and seed production of Nymphoides peltata in Lake Kasumigaura (In Japanese). Syuseibutsugaku Kenkyu 17:59–63Google Scholar
  36. McCue KA, Holtsford TP (1998). Seed bank influences on genetic diversity in the rare annual Clarkia springvillensis (Onagraceae). Am. J. Bot. 85:30–36CrossRefGoogle Scholar
  37. Middleton B (1999). Wetland restoration: Flood pulsing and disturbance dynamics. John Wiley & Sons, New YorkGoogle Scholar
  38. Miller PS, Hedrick PW (2001). Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster. J. Evol. Biol. 14:595–601CrossRefGoogle Scholar
  39. Murray MG, Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325PubMedGoogle Scholar
  40. Nei M, Maruyama T, Chakraborty R (1975). The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  41. Newman D, Pilson D (1997). Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution 51:354–362CrossRefGoogle Scholar
  42. Nishihiro J, Araki S, Fujiwara N, Washitani I (2004). Germination characteristics of lakeshore plants under an artificially stabilized water regime. Aquat. Bot. 79:333–343CrossRefGoogle Scholar
  43. Nishihiro J, Kawaguchi H, Iijima H, Fujiwara N, Washitani I (2001) Conservation ecology ofNymphoides peltata in Lake Kasumigaura. Ecol. Civil Eng. 4:39–48CrossRefGoogle Scholar
  44. Oostermeijer JGB (2000). Population viability analysis of the rare Gentiana pneumonanthe: The importance of genetics, demography and reproductive biology. In: Young AG, Clarke GM (eds). Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp. 313–334Google Scholar
  45. Oostermeijer JGB, Luijten SH, den Nijs JCM (2003). Integrating demographic and genetic approaches in plant conservation. Biol. Conserv. 113:389–398CrossRefGoogle Scholar
  46. Oostermeijer JGB, van Eijck MW, den Nijs JCM (1994). Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97:289–296Google Scholar
  47. Oostermeijer JGB, van’t Veer R, den Nijs JCM (1994). Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J. Appl. Ecol. 31:428–438CrossRefGoogle Scholar
  48. Ornduff R (1966). The origin of dioecism from heterostyly in Nymphoides (Menyanthaceae). Evolution 20:309–314CrossRefGoogle Scholar
  49. Petit RJ, El Mousadik A, Pons O (1998). Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12:844–855CrossRefGoogle Scholar
  50. Piry S, Luikart G, Cornuet JM (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90:502–503CrossRefGoogle Scholar
  51. Presciuttini S, Toni C, Tempestini E, Verdiani S, Casarino L, Spinetti I, De Stefano F, Domenici R, Bailey-Wilson JE (2002) Inferring relationships between pairs of individuals from locus heterozygosities. BMC Genetics, 3Google Scholar
  52. Pywell RF, Pakeman RJ, Allchin EA, Bourn NAD, Warman EA, Warler KJ (2002). The potential for lowland heath regeneration following plantation removal. Biol. Conserv. 108:247–258CrossRefGoogle Scholar
  53. Raymond M, Rousset F (1995). Genepop (version-1.2): Population genetics software for exact tests and ecumenicism. J. Hered 86:248–249Google Scholar
  54. Reed DH (2005). Relationship between population size and fitness. Conserv. Biol. 19:563–568CrossRefGoogle Scholar
  55. Roberts HA, Feast PM (1973). Emergence and longevity of seeds of annual weeds in cultivated and undisturbed soil. J. Appl. Ecol. 10:133–143CrossRefGoogle Scholar
  56. Rowland J, Maun MA (2001). Restoration ecology of an endangered plant species: Establishment of new populations of Cirsium pitcheri. Restor. Ecol. 9:60–70CrossRefGoogle Scholar
  57. Schmidt K, Jensen K (2000). Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am. J. Bot. 87:678–689PubMedCrossRefGoogle Scholar
  58. Schoen DJ, Brown AHD (1993). Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci. 90:10623–10627PubMedCrossRefGoogle Scholar
  59. Smits AJM, Van Avesaath PH, Van der Velde G (1990). Germination requirements and seed banks of some nymphaeid macrophytes: Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze. Freshwtr. Biol. 24:315–326CrossRefGoogle Scholar
  60. Takagawa S, Nishihiro J, Washitani I (2005). Safe sites for establishment of Nymphoides peltata seedlings for recovering the population from the soil seed bank. Ecol. Res. 20:661–667CrossRefGoogle Scholar
  61. Tallmon DA, Luikart G, Waples RS (2004). The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19:489–496CrossRefPubMedGoogle Scholar
  62. Uesugi R, Goka K, Nishihiro J, Washitani I (2004). Allozyme polymorphism and conservation of the Lake Kasumigaura population of Nymphoides peltata. Aquat. Bot. 79:203–210CrossRefGoogle Scholar
  63. Uesugi R, Tani N, Goka K, Nishihiro J, Tsumura Y, Washitani I (2005). Isolation and characterization of highly polymorphic microsatellites in the aquatic plant, Nymphoides peltata (Menyanthaceae). Mol. Ecol. Notes 5:343–345CrossRefGoogle Scholar
  64. van der Velde G, Giesen TG, van der Heijden L (1979) Structure, biomass and seasonal changes in biomass of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae), a preliminary study. Aquat. Bot., 7, 279–300CrossRefGoogle Scholar
  65. Wang Y, Wang QF, Guo YH, Barrett SCH (2005). Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: A distylous aquatic plant. New Phytol. 165:329–335CrossRefPubMedGoogle Scholar
  66. Washitani I, Osawa R, Namai H, Niwa M (1994). Patterns of female fertility in heterostylous Primula sieboldii under severe pollinator limitation. J. Ecol. 82:571–579CrossRefGoogle Scholar
  67. Weir BS, Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  68. Weisner SEB, Ekstam B (1993). Influence of germination time on juvenile performance of Phragmites australis on temporarily exposed bottoms: Implications for the colonization of lake beds. Aquat. Bot. 45:107–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Shinichi Takagawa
    • 1
  • Izumi Washitani
    • 1
  • Ryuji Uesugi
    • 2
  • Yoshihiko Tsumura
    • 3
  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-kuJapan
  2. 2.Graduate School of AgricultureKyoto UniversitySakyo-kuJapan
  3. 3.Forestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations