Conservation Genetics

, Volume 7, Issue 4, pp 605–611 | Cite as

Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park

  • Stephen F. Spear
  • Charles R. Peterson
  • Marjorie D. Matocq
  • Andrew Storfer


Population declines caused by natural and anthropogenic factors can quickly erode genetic diversity in natural populations. In this study, we examined genetic variation within 10 tiger salamander populations across northern Yellowstone National Park in Wyoming and Montana, USA using eight microsatellite loci. We tested for the genetic signature of population decline using heterozygosity excess, shifts in allele frequencies, and low ratios of allelic number to allelic size range (M-ratios). We found different results among the three tests. All 10 populations had low M-ratios, five had shifts in allele frequencies and only two had significant heterozygosity excesses. These results support theoretical expectations of different temporal signatures among bottleneck tests and suggest that both historical fish stocking, recent, sustained drought, and possibly an emerging amphibian disease have contributed to declines in effective population size.


Ambystoma tigrinum amphibian declines bottlenecks M-ratio Yellowstone National Park 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was supported by the University of Wyoming-National Park Service Research Station, the Idaho State University Graduate Student Research and Scholarship Committee, the Idaho State University Department of Biological Sciences and NSF IBN-0213851 to A.S. G. Elrod, T.␣Elrod, D. Jochimsen, A.A. Spear, A.M Spear, B. Spear and K. Spear helped collect tissue samples. K. Lew provided assistance with the laboratory work. We thank C. Hendrix and the National Park Service for granting permission to work in Yellowstone National Park. This research was approved by the Animal Welfare Committee at Idaho State University (#02-10-463).


  1. Adams EM, Jones AG, Arnold SJ (2005) Multiple paternity in a natural population of asalamander with long-term sperm storage. Mol. Ecol., 14, 1803–1810PubMedCrossRefGoogle Scholar
  2. Alford RA, Richards SJ (1999) Global amphibian declines: A problem in applied ecology. Annu. Rev. Ecol. Syst. 30:133–165CrossRefGoogle Scholar
  3. Amos W, Balmford A (2001) When does conservation genetics matter?. Heredity 87:257–265PubMedCrossRefGoogle Scholar
  4. Anderson LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks andinbreeding in the European tree frog (Hyla arborea). Proc. Roy. Soc. London B, 271, 1293–1302CrossRefGoogle Scholar
  5. Beebee T, Rowe G (2001) Application of genetic bottleneck testing to the investigation of amphibian declines: A case study with natterjack toads. Conserv. Biol. 15:266–270CrossRefGoogle Scholar
  6. Beerli P (2003) Migrate: documentation and program, part of LAMARC. Version 1.7.3. Distributed over the internet at
  7. Brunner JL, Schock DM, Davidson EW, Collins JP (2004) Intraspecific reservoirs: Complex life history and the persistence of a lethal ranavirus. Ecology 85:560–566CrossRefGoogle Scholar
  8. Buhlmann KA, Mitchell JC (2000) Age of adult Eastern Tiger Salamanders (Ambystoma tigrinum tigrinum) in a Virginia sinkhole pond complex: Implications for conservation. J. Elisha Mitch. Sci. Soc. 116:239–244Google Scholar
  9. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers. Distrib. 9:89–98CrossRefGoogle Scholar
  10. Collins JP, Jones TR, Berna HA (1988) Conserving genetically distinctive populations: the case of the Huachuca tiger salamander (Ambystoma tigrinum stebbinsi). In: Szaro RC, Severson KC, Patton DR (eds) Management of Amphibians, Reptiles and Small Mammals in North America. SDA Forest Service GTR-RM-166 Rocky Mountain Forest and Range Experiment Station, Fort Collins CO, pp 45–53Google Scholar
  11. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  12. Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders(Dicamptodon tenebrosus) in a managed forest. Biol. Conserv., 115, 45–54CrossRefGoogle Scholar
  13. Di Rienzo A, Peterson AC, Garza JC, et al. (1994) Mutational processes of simple sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U.S.A 91:3166–3170PubMedCrossRefGoogle Scholar
  14. Dunham JB, Pilliod DS, Young MK (2004) Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29:18–26CrossRefGoogle Scholar
  15. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10:305–318PubMedCrossRefGoogle Scholar
  16. Harley EH (2002) AGARst: a program for calculating allele frequencies, Gst and Rst from microsatellite data plus a number of other population genetic estimates and outputting files formatted for various other population genetic programs,
  17. Hedrick PW (2004) Recent developments in conservation genetics. For. Ecol. Manage. 197:3–19CrossRefGoogle Scholar
  18. Jancovich JK, Davidson EW, Morado FJ, Jacobs BL, Collins JP (1997) Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigrinum stebbinsi. Dis. Aquat. Organ. 31:161–167CrossRefGoogle Scholar
  19. Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A (2005) Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol. 14:213–224PubMedCrossRefGoogle Scholar
  20. Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and thespatio-temporal genetic structure of subdivided new populations (Trituruscristatus, T. marmoratus). J. Evol. Biol., 18, 619–628PubMedCrossRefGoogle Scholar
  21. Luikart G, Allendorf FW, Cornuet J-M, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89:238–247PubMedCrossRefGoogle Scholar
  22. Mao J, Tham TN, Gentry GA, Aubertin A, Chinchar VG (1996) Cloning, sequence analysis and expression of the major capsid protein of the iridovirus frog virus 3. Virology 216:431–436PubMedCrossRefGoogle Scholar
  23. Mech SG, Storfer A, Ernst JA, Reudink MW, Maloney SC (2003) Polymorphic microsatellite loci for tiger salamanders, Ambystoma tigrinum. Mol. Ecol. Notes 3:79–81CrossRefGoogle Scholar
  24. Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian:the effect of reproductive skew on estimates of male reproductive success.Mol. Ecol., 13, 1951–1963PubMedCrossRefGoogle Scholar
  25. Patla DA, Peterson CR (2004) Amphibian and reptile inventory and monitoring: Grand Teton and Yellowstone National Parks. 2000–2003 Final Report.Google Scholar
  26. Pearman PB, Garner TWJ (2005) Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecol. Lett., 8, 401–408CrossRefGoogle Scholar
  27. Pechmann HK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991) Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253:892–895PubMedCrossRefGoogle Scholar
  28. Semlitsch RD (2003) Conservation of pond-breeding amphibians. In: Semlitsch RD (eds) Amphibian Conservation. Smithsonian Institution, Washington D.C, pp 8–23Google Scholar
  29. Semlitsch RD, Scott DE, Pechmann JHK, Gibbons JW (1996) Structure and dynamics of an amphibian community: Evidence from a 16-year study of a natural pond. In: Cody ML, Smallwood JA (eds) Long-term Studies of Vertebrate Communities. Academic Press, San Diego CA, pp 217–248CrossRefGoogle Scholar
  30. Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol. Ecol., 14, 2553–2564Google Scholar
  31. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedCrossRefGoogle Scholar
  32. Tyler, TJ, Liss WJ, Ganio LM, Larson GL, Hoffman RL, Deimling E, Lomnicky G (1998) Interaction between introduced trout and larval salamanders (Ambystoma macrodactylum) in high elevation lakes. Conserv. Biol. 12:94–105CrossRefGoogle Scholar
  33. Varley JD (1981) A history of fish stocking activites in Yellowstone National Park between 1881–1980. USDI National Park Service, Yellowstone National Park Information Paper No. 35Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stephen F. Spear
    • 1
  • Charles R. Peterson
    • 1
  • Marjorie D. Matocq
    • 1
  • Andrew Storfer
    • 2
  1. 1.Department of Biological SciencesIdaho State UniversityPocatelloUSA
  2. 2.School of Biological SciencesWashington State UniversityPullmanUSA

Personalised recommendations