Skip to main content
Log in

Metapopulation viability: influence of migration

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We investigate the effects of migration pattern on the reduction in metapopulation fitness due to deleterious mutations. Using a matrix approach and stochastic simulations we explore the case of a metapopulation consisting of two and three populations. Both in the long and in the short-term, the viability of a two-populations system depends strongly on the symmetry of exchange, i.e. metapopulation viability is maximized when the number of migrants sent equals the number of migrants received in each population. For a three-population system, the same principle holds in the few cases explored, but a complete demonstration is still needed. In other terms, a very unfavorable situation occurs when a population that receives few migrants is a major source of migrants for the other populations. In conclusion, low but symmetrical number of migrants leads to higher viability than higher but asymmetrical number of migrants. Assuming that it is easier to decrease than to increase the number of migrants, a reasonable management option in the case of unequal number of migrants, could, therefore, be to decrease the higher ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • NH Barton MC Whitlock (1997) The evolution of metapopulations I Hanski ME Gilpin (Eds) Metapopulation Biology Academic San Diego 182–197

    Google Scholar 

  • P Beier RF Noss (1998) ArticleTitleDo habitat corridors provide connectivity? Conserv. Biol. 12 1241–1252

    Google Scholar 

  • JH Brown A Kodric-Brown (1977) ArticleTitleTurnover rates in insular biogeography: effect of immigration on extinction Ecology 58 445–449

    Google Scholar 

  • JL Cherry (2004) ArticleTitleSelection, subdivision and extinction and recolonization Genetics 166 1105–1114

    Google Scholar 

  • B Colas I Olivieri M Riba (1997) ArticleTitleCentaurea corymbosa, a cliff-dwelling species tottering on the brink of extinction: a demographic and genetic study Proc. Natl. Acad. Sci. U 94 3471–3476

    Google Scholar 

  • Couvet D (2002) The deleterious effects of inbreeding in the case of population fragmentation. Conserv. Biol. (in press).

  • JF Crow M Kimura (1970) An Introduction to Population Genetics Theory Alpha editions Minneapolis, USA

    Google Scholar 

  • DM Debinski RD Holt (2000) ArticleTitleA survey and overview of habitat fragmentation experiments Conserv. Biol. 14 342–355

    Google Scholar 

  • L Fahrig G Merriam (1985) ArticleTitleHabitat patch connectivity and population viability Ecology 66 1762–1768

    Google Scholar 

  • S Glémin J Ronfort T Bataillon (2003) ArticleTitlePatterns of inbreeding depression and architecture of the load in subdivided populations Genetics 165 2193–2212

    Google Scholar 

  • A Gonzalez JR Lawton FS Gilbert TM Blackburn I Evans-Freke (1998) ArticleTitleMetapopulation dynamics and distribution in a microecosystem Science 281 2045–2047

    Google Scholar 

  • I Hanski O Ovaskainen (2000) ArticleTitleThe metapopulation capacity of a fragmented landscape Nature 404 755–758 Occurrence Handle10.1038/35008063

    Article  Google Scholar 

  • I Hanski J Pöyry T Pakkala M Kuussaari (1995) ArticleTitleMultiple equilibria in metapopulation dynamics Nature 377 618–621

    Google Scholar 

  • I Hanski DS Simberloff (1997) The metapopulation approach, its history, conceptual domain and application to conservation I Hanski ME Gilpin (Eds) Metapopulation Biology Academic San Diego 5–26

    Google Scholar 

  • S Harcourt (1991) ArticleTitleEndangered species Nature 354 10

    Google Scholar 

  • PW Hedrick (1995) ArticleTitleGene flow and genetic restoration: the Florida panther as a case study Conserv. Biol. 9 996–1007

    Google Scholar 

  • G Hess (1994) ArticleTitleConservation corridors and contagious disease: a cautionary note Conserv. Biol. 8 256–262

    Google Scholar 

  • K Higgins M Lynch (2001) ArticleTitleMetapopulation extinction caused by mutation accumulation Proc. Natl. Acad. Sci. U. 98 2928–2933

    Google Scholar 

  • TJ Kawecki R Holt (2002) ArticleTitleEvolutionary consequences of asymmetric dispersal rates Am. Nat. 160 333–347

    Google Scholar 

  • DA Levin (1988) ArticleTitleConsequences of stochastic elements in plant migration Am. Nat. 132 643–651

    Google Scholar 

  • M Lynch W Gabriel (1990) ArticleTitleMutation load and the viability of small populations Evolution 44 1725–1737

    Google Scholar 

  • M Lynch J Conery R Bürger (1995a) ArticleTitleMutation accumulation and the extinction of small populations Am. Nat. 146 489–518

    Google Scholar 

  • M Lynch J Conery R Bürger (1995b) ArticleTitleMutation meltdowns in sexual populations Evolution 49 1067–1080

    Google Scholar 

  • DW MacDonald (1996) ArticleTitleDangerous liaisons and disease Nature 379 400–401

    Google Scholar 

  • MA MacPeek RD Holt (1992) ArticleTitleThe evolution of dispersal in spatially and temporally varying environments Am. Nat. 140 1010–1027

    Google Scholar 

  • SH Margan RK Nurthen ME Montgomery LM Woodworth EH Lowe DA Briscoe R Frankham (1998) ArticleTitleSingle large or several small? Population fragmentation in the captive management of endangered species Zoo Biol. 17 467–480

    Google Scholar 

  • LS Mills FW Allendorf (1996) ArticleTitleThe one-migrant-per-generation rule in conservation and management Conserv. Biol. 10 1509–1518

    Google Scholar 

  • T Nagylaki (1979) ArticleTitleThe island model with stochastic migration Genetics 91 163–176

    Google Scholar 

  • A Robert D Couvet F Sarrazin (2003) ArticleTitleRole of local adaptation in metapopulation restorations Ani. conserv. 6 1–10

    Google Scholar 

  • I Saccheri M Kuussaari M Kankare P Vikman W Fortelius I Hanski (1998) ArticleTitleInbreeding and extinction in a butterfly metapopulation Nature 392 491–494

    Google Scholar 

  • D Simberloff (1988) ArticleTitleThe contribution of population and community biology to conservation science Annu. Rev. Ecol. Syst 19 473–511

    Google Scholar 

  • M Slatkin (1985) ArticleTitleGene flow in natural populations Annu. Rev. Ecol. Syst 16 393–430

    Google Scholar 

  • PT Spieth (1974) ArticleTitleGene flow and genetic differentiation Genetics 78 961–965

    Google Scholar 

  • A Storfer (1999) ArticleTitleGene flow and endangered species translocations: a topic revisited Biol. Conserv. 87 173–180

    Google Scholar 

  • JA Vucetich T Waite (2000) ArticleTitleIs one migrant per generation sufficient for the genetic management of fluctuating populations Ani. Conserv. 3 261–266

    Google Scholar 

  • MC Whitlock NH Barton (1997) ArticleTitleThe effective size of a subdivided population Genetics 146 427–441 Occurrence Handle1:STN:280:ByiB1c7nt1c%3D Occurrence Handle9136031

    CAS  PubMed  Google Scholar 

  • MC Whitlock (2002) ArticleTitleSelection, load and inbreeding depression in a large metapopulation Genetics 166 1191–1202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Couvet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchy, P., Theodorou, K. & Couvet, D. Metapopulation viability: influence of migration. Conserv Genet 6, 75–85 (2005). https://doi.org/10.1007/s10592-004-7744-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-004-7744-7

Keywords

Navigation