Skip to main content

Advertisement

Log in

Time-optimal velocity planning by a bound-tightening technique

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Range reduction techniques often considerably enhance the performance of algorithmic approaches for the solution of nonconvex problems. In this paper we propose a range reduction technique for a class of optimization problems with some special structured constraints. The procedure explores and updates the values associated to the nodes of a suitably defined graph. Convergence of the procedure and some efficiency issues, in particular related to the order into which the nodes of the graph are explored. The proposed technique is applied to solve problems arising from a relevant practical application, namely velocity planning along a given trajectory. The computational experiments show the efficiency of the procedure and its ability of returning solutions within times much lower than those of nonlinear solvers and compatible with real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ausiello, G., Franciosa, P., Frigioni, D.: Directed hypergraphs: Problems, algorithmic results, and a novel decremental approach. In: Theoretical Computer Science. ICTCS 2001. Lecture Notes in Computer Science vol. 2202, pp. 312–328 (2001)

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächther, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, H.P.: Simplicial branch-and-reduce algorithm for convex programs with a multiplicative constraint. J. Optim. Theory Appl. 145, 213–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobrow, J., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)

    Article  Google Scholar 

  6. Cabassi, F., Consolini, L., Laurini, M., Locatelli, M.: Convergence analysis of spatial-sampling based algorithms for time-optimal smooth velocity planning (2017) (submitted)

  7. Caprara, A., Monaci, M.: Bidimensional packing by bilinear programming. Math. Program. 118, 75–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Math. Program. 125, 123–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara, A., Locatelli, M., Monaci, M.: Theoretical and computational results about optimality-based domain reductions. Comput. Optim. Appl. 64(2), 513–533 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casado, L.G., Martinez, J.A., Garcia, I., Sergeyev, Y.D.: New interval analysis support functions using gradient information in a global minimization algorithm. J. Glob. Optim. 25, 345–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C., He, Y., Bu, C., Han, J., Zhang, X.: Quartic Bézier curve based trajectory generation for autonomous vehicles with curvature and velocity constraints. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6108–6113 (2014)

  12. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: A linear-time algorithm for minimum-time velocity planning of autonomous vehicles. In: IEEE Proceedings of the 24th Mediterranean Conference on Control and Automation (MED) (2016)

  13. Consolini, L., Locatelli, M., Minari, A., Piazzi, A.: An optimal complexity algorithm for minimum-time velocity planning. Syst. Control Lett. 103, 50–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  15. Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems. Comput. Chem. Eng. 35, 446–455 (2011)

    Article  Google Scholar 

  16. Frego, M., Bertolazzi, E., Biral, F., Fontanelli, D., Palopoli, L.: Semi-analytical minimum time solutions for a vehicle following clothoid-based trajectory subject to velocity constraints. In: 2016 European Control Conference (ECC), pp. 2221–2227 (2016)

  17. Hamed, A.S.E., McCormick, G.P.: Calculation of bounds on variables satisfying nonlinear inequality constraints. J. Glob. Optim. 3, 25–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization. Math. Program. 52, 227–254 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kant, K., Zucker., S.W.: Toward efficient trajectory planning: the path-velocity decomposition. Int. J. Robot. Res. 5(3), 72–89 (1986)

    Article  Google Scholar 

  20. Li, X., Sun, Z., Kurt, A., Zhu, Q.: A sampling-based local trajectory planner for autonomous driving along a reference path. In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 376–381 (2014)

  21. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Appl. Math. 122, 139–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–370 (1997)

    Article  Google Scholar 

  23. Muñoz, V., Ollero, A., Prado, M., Simón, A.: Mobile robot trajectory planning with dynamic and kinematic constraints. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 4, pp. 2802–2807, San Diego, CA (1994)

  24. Nagy, A., Vajk, I.: LP-based velocity profile generation for robotic manipulators. Int. J. Control. (2017). https://doi.org/10.1080/00207179.2017.1286535

  25. Ryoo, H., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, P., Ma, Y., Chen, Y.: Global optimization for the generalized polynomial sum of ratios problem. J. Glob. Optim. 50, 439–455 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Slotine, J.J.E., Yang, H.S.: Improving the efficiency of time-optimal path-following algorithms. IEEE Trans. Robot. Autom. 5(1), 118–124 (1989)

    Article  Google Scholar 

  28. Solea, R., Nunes, U.: Trajectory planning with velocity planner for fully-automated passenger vehicles. In: IEEE Intelligent Transportation Systems Conference, ITSC ’06, pp. 474–480 (2006)

  29. Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimization in continuous and mixed-integer nonlinear programming theory, algorithms, software, and applications. In: Nonconvex Optimization and Its Applications, vol. 65. Springer, Berlin (2003)

  30. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tóth, B., Casado, L.: Multi-dimensional pruning from the Baumann point in an interval global optimization algorithm. J. Glob. Optim. 38, 215–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Velenis, E., Tsiotras, P.: Minimum-time travel for a vehicle with acceleration limits: Theoretical analysis and receding-horizon implementation. J. Optim. Theory Appl. 138(2), 275–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., Diehl, M.: Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans. Autom. Control 54(10), 2318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Villagra, J., Milanés, V., Pérez, J., Godoy, J.: Smooth path and speed planning for an automated public transport vehicle. Robot. Auton. Syst. 60, 252–265 (2012)

    Article  Google Scholar 

  35. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Locatelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabassi, F., Consolini, L. & Locatelli, M. Time-optimal velocity planning by a bound-tightening technique. Comput Optim Appl 70, 61–90 (2018). https://doi.org/10.1007/s10589-017-9978-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9978-6

Keywords

Navigation