A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides

  • Guanglin Xu
  • Samuel Burer


We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which in turn leads to a class of tractable, semidefinite-based approximations that are at least as strong as the affine policy. We investigate several examples from the literature demonstrating that our tractable approximations significantly improve the affine policy. In particular, our approach solves exactly in polynomial time a class of instances of increasing size for which the affine policy admits an arbitrarily large gap.


Two-stage adjustable robust optimization Robust optimization Bilinear programming Non-convex quadratic programming Semidefinite programming Copositive programming 



The authors would like to thank Qihang Lin for many helpful discussions regarding the affine policy at the beginning of the project and Erick Delage and Amir Ardestani-Jaafari for thoughtful discussions, for relaying the specific parameters of the instance presented in Sect. 5.2, and for pointing out an error in one of our codes. The authors are sincerely grateful to two anonymous referees for their comments and insights that have greatly improved the paper.


  1. 1.
    Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ardestani-Jaafari, A., Delage, E.: The value of flexibility in robust location-transportation problem. Les Cahiers du GERAD G-2014-83, GERAD, HEC Montréal (2014)Google Scholar
  3. 3.
    Ardestani-Jaafari, A., Delage, E.: Linearized robust counterparts of two-stage robust optimization problem with applications in operations management. Manuscript, HEC Montreal (2016)Google Scholar
  4. 4.
    Ardestani-Jaafari, A., Delage, E.: Robust optimization of sums of piecewise linear functions with application to inventory problems. Oper. Res. 64(2), 474–494 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Tal, A., Boaz, G., Shimrit, S.: Robust multi-echelon multi-period inventory control. Eur. J. Oper. Res. 199(3), 922–935 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Tal, A., Do Chung, B., Mandala, S.R., Yao, T.: Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. Part B: Methodol. 45(8), 1177–1189 (2011)CrossRefGoogle Scholar
  8. 8.
    Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-P.: Retailer-supplier flexible commitments contracts: a robust optimization approach. Manuf. Serv. Oper. Manag. 7(3), 248–271 (2005)CrossRefGoogle Scholar
  9. 9.
    Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. Ser. A 99, 351–376 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–14 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bertsimas, D., de Ruiter, F.J.: Duality in two-stage adaptive linear optimization: faster computation and stronger bounds. INFORMS J. Comput. 28(3), 500–511 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bertsimas, D., Goyal, V., Lu, P.Y.: A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization. Math. Program. Ser. A 150(2), 281–319 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bertsimas, D., Iancu, D.A., Parrilo, P.A.: A hierarchy of near-optimal policies for multistage adaptive optimization. IEEE Trans. Autom. Control 56(12), 2809–2824 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)CrossRefGoogle Scholar
  15. 15.
    Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. Ser. A 120(2), 479–495 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Burer, S.: Copositive programming. In: Anjos, M., Lasserre, J. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications. International Series in Operational Research and Management Science, pp. 201–218. Springer, Berlin (2011)Google Scholar
  17. 17.
    Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. 151(1), 89–116 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40, 203–206 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chang, Y., Rao, S., Tawarmalani, M.: Robust validation of network designs under uncertain demands and failures. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pp. 347–362, Boston, MA (2017). USENIX AssociationGoogle Scholar
  20. 20.
    Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Delage, E., Iancu, D.A.: Robust Multistage Decision Making, chap. 2, pp. 20–46. INFORMS (2015)Google Scholar
  22. 22.
    Doulabi, S.H.H., Jaillet, P., Pesant, G., Rousseau, L.-M.: Exploiting the structure of two-stage robust optimization models with integer adversarial variables. Manuscript, MIT (2016)Google Scholar
  23. 23.
    Eichfelder, G., Jahn, J.: Set-semidefinite optimization. J. Convex Anal. 15, 767–801 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fonseca, R.J., Rustem, B.: International portfolio management with affine policies. Eur. J. Oper. Res. 223(1), 177–187 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gabrel, V., Lacroix, M., Murat, C., Remli, N.: Robust location transportation problems under uncertain demands. Discrete Appl. Math. 164, 100–111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gorissen, B.L., Den Hertog, D.: Robust counterparts of inequalities containing sums of maxima of linear functions. Eur. J. Oper. Res. 227(1), 30–43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hadjiyiannis, M.J., Goulart, P.J., Kuhn, D.: A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, Dec 12–15 (2011)Google Scholar
  29. 29.
    Hanasusanto, G.A., Kuhn, D.: Conic programming reformulations of two-stage distributionally robust linear programs over wasserstein balls. arXiv preprint arXiv:1609.07505 (2016)Google Scholar
  30. 30.
    Konno, H.: A cutting plane algorithm for solving bilinear programs. Math. Program. 11, 14–27 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pp. 284–289. IEEE (2004)Google Scholar
  32. 32.
    MOSEK ApS: The MOSEK Optimization toolbox for MATLAB Manual. Version 8.0 (Revision 28). (2017)
  33. 33.
    Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Poss, M., Raack, C.: Affine recourse for the robust network design problem: between static and dynamic routing. Networks 61(2), 180–198 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986). A Wiley-Interscience PublicationGoogle Scholar
  36. 36.
    Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, Berlin (2013)zbMATHGoogle Scholar
  37. 37.
    Solyalı, O., Cordeau, J.-F., Laporte, G.: The impact of modeling on robust inventory management under demand uncertainty. Manag. Sci. 62(4), 1188–1201 (2016)CrossRefGoogle Scholar
  38. 38.
    Wang, Q., Watson, J.P., Guan, Y.: Two-stage robust optimization for Nk contingency-constrained unit commitment. IEEE Trans. Power Syst. 28, 2366–2375 (2013)CrossRefGoogle Scholar
  39. 39.
    Wiesemann, W., Kuhn, D., Rustem, B.: Robust resource allocations in temporal networks. Math. Program. Ser. A 135(1), 437–471 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41, 457–461 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhao, L., Zeng, B.: Robust unit commitment problem with demand response and wind energy. In: Power and Energy Society General Meeting, 2012 IEEE, pp. 1–8. IEEE (2012)Google Scholar
  42. 42.
    Zuluaga, L.F., Vera, J., Pea, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Management SciencesUniversity of IowaIowa CityUSA

Personalised recommendations