Skip to main content
Log in

Discretization of semilinear bang-singular-bang control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Bang-singular controls may appear in optimal control problems where the control enters the system linearly. We analyze a discretization of the first-order system of necessary optimality conditions written in terms of a variational inequality (or: inclusion) under appropriate assumptions including second-order optimality conditions. For the so-called semilinear case, it is proved that the discrete control has the same principal bang-singular-bang structure as the reference control and, in \(L_{1}\) topology, the convergence is of order one w.r.t. the stepsize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. matlab is a registered trademark of TheMathWorks, Inc.  (see www.mathworks.com).

References

  1. Alt, W., Seydenschwanz, M.: Regularization and discretization of linear-quadratic control problems. Control Cybern. 40(4), 903–920 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Alt, W., Seydenschwanz, M.: An implicit discretization scheme for linear-quadratic control problems with bang-bang solutions. Optim. Methods Softw. 29(3), 535–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numer. Algebra Control Optim. 2(3), 547–570 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, W., Baier, R., Lempio, F., Gerdts, M.: Approximations of linear control problems with bang-bang solutions. Optimization 62(1), 9–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronna, S.M., Bonnans, J.F., Dmitruk, A.V., Lotito, P.A.: Quadratic order conditions for bang-singular extremals. Numer. Algebra Control Optim. 2(3), 511–546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronna, M.S., Bonnans, J.F., Martinon, P.: A shooting algorithm for optimal control problems with singular arcs. J. Optim. Theory Appl. 158(2), 419–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dmitruk, A.V.: Quadratic conditions for a weak minimium for singular regimes in optimal control problems. Sov. Math. Dokl. 18(2), 1 (1977)

    Google Scholar 

  8. Dmitruk, A.V.: Conditions of Jacobi type for Bolza’s problem with inequalities. Math. Notes 35, 427–435 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dmitruk, A.V.: Jacobi type conditions for singular extremals. Control Cybern. 37(2), 285–306 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Dmitruk, A.V., Milyutin, A.A.: A condition of Legendre type for optimal control problems, linear in control. In: Loffe, A., Reich, S., Shafrir, I. (eds.) Calculus of Variations and Optimal Control (Haifa, 1998), pp. 49–61. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  11. Dobrowolski, M.: Angewandte Funktionalanalysis. Springer, Berlin (2006)

    Google Scholar 

  12. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70(233), 173–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for Euler approximation of a state and control constrained optimal control. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felgenhauer, U.: Structural stability investigation of bang-singular-bang optimal controls. J. Optim. Theory Appl. 152(3), 605–631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felgenhauer, U.: Stability analysis of variational inequalities for bang-singular-bang controls. Control Cybern. 42(3), 557–592 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Fischer, A.: An NCP-function and its use for the solution of complementarity problems. In: Du, D.Z., Qi, L., Womersley, R.S. (eds.) Recent Advances in Nonsmooth Optimization, pp. 88–105. World Scientific Publishers, Minneapolis (1995)

    Chapter  Google Scholar 

  17. Fischer, A.: A Newton-type method for positive-semidefinite linear complementarity problems. J. Optim. Theory Appl. 46(3), 585–608 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fischer, A., Jiang, H.: Merit functions for complementarity and related problems: a survey. Comput. Optim. Appl. 17, 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gabasov, R., Kirillova, F.M.: High order necessary conditions for optimality. SIAM J. Control 10(1), 127–168 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goh, B.S.: The second variation for the singular Bolza problem. SIAM J. Control 4(2), 309–325 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goh, B.S.: Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control 4(4), 716–731 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigorieff, R.D.: Diskrete Approximation von Eigenwertproblemen, I. Qualitative Konvergenz. Numer. Math. 24(4), 355–374 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. (2) 20(4), 292–296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haunschmied, J.L., Pietrus, A., Veliov, V.M.: The Euler method for linear control systems revisited. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing. Lecture Notes in Computer Science, pp. 90–97. Springer, Heidelberg (2014)

    Google Scholar 

  25. Jiang, H.: Smoothed Fischer-Burmeister equation methods for the complementarity problem, Technical Report, Department of Mathematics, The University of Melbourne, Melbourne (1997)

  26. Kelley, H.J.: A second variation test for singular extremals. AIAA J. 2(8), 1380–1382 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  28. Korytowski, A., Szymkat, M., Maurer, H., Vossen, G.: Optimal control of a fedbatch fermentation process: numerical methods, sufficient conditions, and sensitivity analysis, In: 47th IEEE Conference on Decision and Control, Cancun (Mexico) 2008, IEEE, Control Systems Society, 1551–1556 (2008). doi: 10.1109/CDC.2008.4739078

  29. Krener, A.J.: The high order maximum principle and its application to singular extremals. SIAM J. Control Optim. 15(2), 256–292 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ledzewicz, U., Schättler, H.: Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ledzewicz, U., Maurer, H., Schättler, H.: Bang-bang and singular controls in a mathematical model for combined anti-angiogenic and chemotherapy treatments, In: 48th IEEE Conference on Decision and Control, Shanghai, China, IEEE Control Systems Society, 2280–2285 (2009). doi: 10.1109/CDC.2009.5400735

  32. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbation. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1997)

    Google Scholar 

  33. Maurer, H.: Numerical solution of singular control problems using multiple shooting techniques. J. Optim. Theory Appl. 18(2), 235–257 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maurer, H., Tarnopolskaya, T., Fulton, N.L.: Singular controls in optimal collision avoidance for participants with unequal linear speeds. ANZIAM J. Electron. Suppl. 53(C), C1–C18 (2011)

    MathSciNet  Google Scholar 

  35. Milyutin, A.A., Osmolovskii, N.P.: Calculus of Variations and Optimal Control. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  36. Moyer, H.G.: Sufficient conditions for a strong minimum in singular control problems. SIAM J. Control 11(4), 620–636 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Poggiolini, L., Stefani, G.: Minimum time optimality for a bang-singular arc: second-order sufficient conditions, In: 44th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2005, Sevilla, 1433–1438 (2005). doi:10.1109/CDC.2005.1582360

  38. Poggiolini, L., Stefani, G.: Sufficient optimality conditions for a bang-singular extremal in the minimum time problem. Control Cybern. 37(2), 469–490 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Poggiolini, L., Stefani, G.: Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17(4), 469–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Poggiolini, L., Stefani, G.: Structural stability for bang-singular-bang extremals in the minimum time problem. SIAM J. Control Optim. 51(5), 3511–3531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Robinson, S.M.: Generalized equations and their solutions, I. Basic theory. In: Robinson, S.M. (ed.) Point-to-Set Maps and Mathematical Programming, Mathematical Programming Study, pp. 128–141. Dekker, New York (1979)

    Chapter  Google Scholar 

  42. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Robinson, S.M.: Generalized equations and their solutions, II. Applications to nonlinear programming. In: Robinson, S.M. (ed.) Optimality and Stability in Mathematical Programming. Mathematical Programming Studies, pp. 200–221. Dekker, New York (1982)

    Chapter  Google Scholar 

  44. Stefani, G.: Strong optimality of singular trajectories. In: Ancona, F., et al. (eds.) Geometric Control and Nonsmooth Analysis. Applied Mathematical Sciences Series, pp. 300–327. World Science Publisher, Hackensack (2008)

    Chapter  Google Scholar 

  45. Veliov, V.: Error analysis of discrete approximations to bang-bang optimal control problems: the linear case. Control Cybern. 34(3), 967–982 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Veliov, V.: Approximations with error estimates for optimal control problems for linear system. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing. Lecture Notes in Computer Science, pp. 263–270. Springer, Berlin (2006)

    Chapter  Google Scholar 

  47. Vossen, G.: Numerische Lösungsmethoden, hinreichende Optimalitätsbedingungen und Sensitivitätsanalyse für optimale bang-bang und singuläre Steuerungen, Ph.D. Thesis, Faculty of Mathematics and Science, University Münster (2005)

  48. Vossen, G.: Switching time optimization for bang-bang and singular controls. J. Optim. Theory Appl. 144, 409–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zelikin, M.I., Borisov, V.F.: Theory of Chattering Control. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for their instructive comments which, in particular, helped to close a gap in one of the main proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Felgenhauer.

Appendix

Appendix

In this section, we first derive several norm estimates for functions from \(W_{2}^{1}\) resp. their discrete analoga from \(Y^{h}\). Afterwards, the proofs of Lemmas 2 and 10 are given.

Lemma 13

Let \(w\in \mathbb {R}^{k(N+1)}\) with \(\Delta ^{1}w\in \mathbb {R}^{kN}\) be such that

$$\begin{aligned} \Vert w\Vert _{\infty }+\,\Vert \Delta ^{1}w\Vert _{2}\le \,M_0\,<\,\infty . \end{aligned}$$

Then,  \(\Vert w\Vert ^2_{\infty }\le \,M\,(h\,+\,\Vert w\Vert _{(2)})\)  for some \(M>0\) independent of \(h,\,w\).

Proof

Let j be an index where \(|w_{j}|=\Vert w\Vert _{\infty }\), and c a constant greater than \(M_0\). Using

$$\begin{aligned} w_{j+k}\,=\,w_{j}+\sum _{l=0}^{k-1}h(\Delta ^1 w)_{j+l} \end{aligned}$$

and analogous formulas for \(w_{j-k}\), it follows from the assumptions on w that

$$\begin{aligned} |w_{i}|\,\ge \,|w_{j}|\,-\,c\sqrt{h\,|i-j|}\, \ge \, |w_{j}|\left( 1-\frac{1}{\sqrt{2}}\right) \end{aligned}$$

for all i such that \(|i-j|\le m:=\lfloor |w_{j}|^2\cdot {N}/(2c^2)\rfloor \) and \(t_{i}\in [0,1]\). Taking into account \(|w_{j}|^2\cdot {N}/(2c^2)\le M_0^2\,N/(2c^2)< N/2\),  it is easy to see that the conditions are fulfilled at least for \(j<i\le j+m\) in case \(t_{j}\le 1/2\)  (or \(j-m\le i<j\) for \(t_{j}> 1/2\)) , i.e. on some index set I(w) containing at least m knots on [0, 1].  Consequently,

$$\begin{aligned} \Vert w\Vert _{(2)}^{2}\ge & {} h\,\sum _{i\in I(w)}|w_{i}|^{2}\,\ge \,\frac{mh}{2}(1-\sqrt{2})^{2}\,\Vert w\Vert _{\infty }^{2}\\\ge & {} \frac{h}{2}(3-2\sqrt{2})\,\Vert w\Vert _{\infty }^{2} \left( \frac{|w_{j}|^2\cdot N}{2c^2}-\,1\right) \,=\,2\,M_1\Vert w\Vert _{\infty }^{2}\left( \Vert w\Vert ^2_{\infty }-\,2c^2h\right) \end{aligned}$$

(with \(M_1=(3-2\sqrt{2})/(8c^2)\))  due to \(h\cdot N=1\).

If now   \(\Vert w\Vert ^2_{\infty }\ge \,4hc^2\) then \(\Vert w\Vert _{(2)}^{2}\ge \,M_1\Vert w\Vert _{\infty }^{4}\). Otherwise, \(\Vert w\Vert ^2_{\infty }< \,4hc^2\) and hence the lemma. \(\square \)

Remark  For continuous functions \(w\in W_{2}^{1}(0,1;\mathbb {R}^{k})\) with \(\Vert w\Vert _{\infty }+\,\Vert \dot{w}\Vert _2\le M_0\), similarly get   \(\Vert w\Vert _{\infty }\le \,M\,\Vert w\Vert _{2}^{1/2}\) where M depends only on \(M_0\).

The next lemma is a special case of the discrete analogon of Gronwall’s Lemma [22]. In order to emphasize the independence of related constants of the step size h, a short direct proof is provided.

Lemma 14

(Discrete Gronwall Lemma) Suppose there are given an arbitrary \(\phi \in \mathbb {R}^{kN}\) and some constant \(L>0\).

  1. (i)

    If  \(\eta \in \mathbb {R}^{k(N+1)}\) satisfies \(|(\Delta ^{1}\eta )_{i}|\le L\,|\eta _{i}|+|\phi _{i}|\) for \(i=0,\dots ,N-1\), then   \(\Vert \eta \Vert _{\infty }\le \;e^{L}(|\eta _{0}|\,+\,\Vert \phi \Vert _{2})\).

  2. (ii)

    If  \(\eta \in \mathbb {R}^{k(N+1)}\) satisfies \(|(\Delta ^{1}\eta )_{i}|\le L\,|\eta _{i+1}|+|\phi _{i}|\) for \(i=0,\dots ,N-1\), then   \(\Vert \eta \Vert _{\infty }\le \;e^{L}(|\eta _{N}|\,+\,\Vert \phi \Vert _{2})\).

Proof

The proof starts with the observation

$$\begin{aligned} \left| \,|\eta _{i+1}|-|\eta _{i}|\,\right| \,\le \,h\,|(\Delta ^{1}\eta )_{i}|. \end{aligned}$$

For part (i) we thus obtain by induction

$$\begin{aligned} |\eta _{i+1}|\le & {} (1+Lh)|\eta _{i}|\,+\,h\,|\phi _{i}| \;\le \; (1+Lh)^{i+1}|\eta _{0}|\,+\,h\sum _{j=0}^{i}(1+Lh)^{i-j}|\phi _{j}|\\\le & {} (1+Lh)^{N}\left( |\eta _{0}|\,+\,h\sum _{j=0}^{N-1}|\phi _{j}|\right) \;\le \;e^{L}\left( |\eta _{0}|\,+\,\Vert \phi \Vert _{2}\right) . \end{aligned}$$

Similarly, part (ii) follows from  \(|\eta _{i}|\le (1+Lh)|\eta _{i+1}|+h|\phi _{i}|,\;i\le N-1\). \(\square \)

Proof of Lemma 2

Consider first \(x_{i}=\tilde{x}^{h}_{i},\,i=0,\dots ,N\), and \(u_{i}=\tilde{u}^{h}_{i}\):

$$\begin{aligned} x_{i+1}-x_{i}= & {} \int _{\omega _{i}}\dot{x}^{0}(t)\,dt\,=\, \int _{\omega _{i}}\left[ f(x^{0}(t))\,+\,B\,u^{0}(t)\right] \,dt\\= & {} \int _{\omega _{i}}\left[ f(x^{0}(t))-f(x^{0}(t_{i}))\right] \,dt\; +\,h\left[ f(x_{i})+B\,u_{i}\right] \end{aligned}$$

due to the construction of \(\tilde{u}^{h}\). Therefore,

$$\begin{aligned} \tilde{\delta }^{h}_{1i} =\,h^{-1}\int _{t_{i}}^{t_{i}+h}\left[ f(x^{0}(t)) -f(x^{0}(t_{i}))\right] \,dt \,=\;\text{ O }(h). \end{aligned}$$

Analogous estimates show that \(\tilde{\delta }^{h}_{2i}=\hbox {O}(h)\) uniformly for \(i=0,\dots ,N-1\).

The construction of \(\tilde{\mu }^{h}_{i}\) ensures (19) to be valid for each \(i\le N-1\) if only h is sufficiently small. In order to find \(\tilde{\delta }^{h}_{3}\), insert \(\tilde{x}^{h}_{i}, \tilde{p}^{h}_{i}\) and \(\tilde{\mu }^{h}_{i}\) into (18): for \(i=0,\dots ,k\),

$$\begin{aligned} B^{T}p_{i}=\,\sigma ^{0}(t_{i})\; =\;\left\{ \begin{array}{llcl} \tilde{\sigma }^{h}_{i}&{}+\;(\sigma ^{0}(t_{i})-\sigma ^{\tau }(t_{i})) &{}\quad \text{ if }&{}\quad i\le k,\\ \tilde{\sigma }^{h}_{i}&{}&{}\quad \text{ if }&{}\quad i>k. \end{array}\right. \end{aligned}$$

where \(\sigma ^{\tau }\) abbreviates \(\sigma ^{\tau }(t)=\sigma (t+\tau _{s}-t_{k})\). Consequently,

$$\begin{aligned} \left| \tilde{\delta }^{h}_{3i}\right| =|\sigma ^{0}(t_{i}) -\sigma ^{\tau }(t_{i})| \,=\,\text{ O }(h) \qquad \text{ for }\;i\le k, \end{aligned}$$

and \(\tilde{\delta }^{h}_{3i}=0\) in case \(i>k\).   For \(\Delta ^{1}\tilde{\delta }^{h}_{3}, \,\Delta ^{2}\tilde{\delta }^{h}_{3}\) we have

$$\begin{aligned} (\Delta ^{1}\tilde{\delta }^{h}_{3})_{i}= & {} \left\{ \begin{array}{lcl} (\Delta ^{1}\sigma ^{0})_{i}-\,(\Delta ^{1}\sigma ^{\tau })_{i}&{}\text{ if }&{}\quad i\le k-1,\\ -h^{-1}\sigma ^{0}(t_{k}) &{}\text{ if }&{}\quad i= k,\\ \;0&{}\text{ if }&{}\quad i> k, \end{array}\right. \\ (\Delta ^{2}\tilde{\delta }^{h}_{3})_{i}= & {} \left\{ \begin{array}{lcl} (\Delta ^{2}\sigma ^{0})_{i}-\,(\Delta ^{2}\sigma ^{\tau })_{i}&{}\text{ if }&{}\quad i\le k-1,\\ h^{-2}(\sigma ^{0}(t_{k-1})-\sigma ^{\tau }(t_{k-1})-2\sigma ^{0}(t_{k})) &{}\text{ if }&{}\quad i= k,\\ h^{-2}\sigma ^{0}(t_{k})&{}\text{ if }&{}\quad i= k+1,\\ \;\,0&{}\text{ if }&{}\quad i\ge k+2. \end{array}\right. \end{aligned}$$

For \(t\le \tau _{s}\),

$$\begin{aligned} \sigma ^{0}(t)\, =\int _{\tau _{s}}^{t}\int _{\tau _{s}}^{s}\ddot{\sigma }^{0}(\theta )\,d\theta \,ds\, =\,\text{ O }((\tau _{s}-t)^{2}) \end{aligned}$$

so that \(|\sigma ^{0}(t_{k})|+|\sigma ^{0}(t_{k-1})|=\hbox {O}(h^{2})\). Analogously obtain \(|\sigma ^{\tau }(t_{k-1})|=\hbox {O}(h^{2})\), too. Together with the estimates

$$\begin{aligned} |(\Delta ^{1}\sigma ^{\tau })_{i}-\,(\Delta ^{1}\sigma ^{0})_{i}|+ |(\Delta ^{2}\sigma ^{\tau })_{i}-\,(\Delta ^{2}\sigma ^{0})_{i}|= \text{ O }(h), \end{aligned}$$

the desired results for \(\tilde{\delta }_{3}^{h}\) and its finite differences directly follow. \(\square \)

Proof of Lemma 10

By definition, \(\hat{\sigma }=B^{T}\hat{p}\) where \(\hat{p}\) solves the backward initial value problem for the finite difference equation

$$\begin{aligned} (\Delta ^{1}\hat{p})_{i}=\,-\nabla f(\hat{x}_{i+1})^{T}\hat{p}_{i+1},\qquad \hat{p}_{N}=\,-\nabla k(\hat{x}_{N}). \end{aligned}$$

Thus,

$$\begin{aligned} (\Delta ^{1}(\hat{p}-p^{0}))_{i}+\,A_{i+1}(\hat{p}-p^{0})_{i+1}= & {} \left[ \nabla f(x^{0}_{i+1})-\nabla f(\hat{x}_{i+1})\right] ^{T}\hat{p}_{i+1}-\,\tilde{\delta }^{h}_{2i},\\ \hat{p}_{N}-\,p^{0}_{N}= & {} \nabla k(x^{0}_{N})-\nabla k(\hat{x}_{N}). \end{aligned}$$

Taking into account assumption (H0), from Theorem 1 and Lemma 2 conclude

$$\begin{aligned} \Vert \hat{x}-x^{0}\Vert _{2}+\,\Vert \hat{p}- p^{0}\Vert _{2}=\,\text{ O }(\Vert \tilde{\delta }^{h}\Vert _{D}) \,=\,\text{ O }(h). \end{aligned}$$

In analogy to Lemma 7, the boundary terms are equally estimated by \(\hbox {O}(h)\). Using Lemma 14 we see that

$$\begin{aligned} \Vert \hat{p}-p^{0}\Vert _{\infty }=\,\text{ O }(h) \end{aligned}$$
(62)

and the estimate for \(\Vert \hat{\sigma }-\sigma ^{0}\Vert _{\infty }\) directly follows.

Consider next \(\Delta ^{1}(\hat{\sigma }-\sigma ^{0})\):

$$\begin{aligned} (\Delta ^{1}(\hat{\sigma }-\sigma ^{0}))_{i}= & {} B^{T} (\Delta ^{1}(\hat{p}-p^{0}))_{i}\\= & {} -B^{T}\left[ (\nabla \hat{f}_{i+1})^{T}\hat{p}_{i+1}-(\nabla f^{0}_{i+1})^{T}p^{0}_{i+1}+\tilde{\delta }^{h}_{2i}\right] \\= & {} \text{ O }(|\hat{x}_{i+1}-x^{0}_{i+1}|+|\hat{p}_{i+1}-p^{0}_{i+1}| +|\tilde{\delta }^{h}_{2i}|) \end{aligned}$$

so that \(\Vert \Delta ^{1}(\hat{\sigma }-\sigma ^{0})\Vert _{2}=\hbox {O}(h)\) follows from Theorem 1 and Lemma 2.

It remains to find a representation and estimates for \(\Delta ^{2}(\hat{\sigma }-\sigma ^{0})\):

$$\begin{aligned} (\Delta ^{2}\hat{\sigma })_{i}= & {} h^{-1}B^{T}\left( (\Delta ^{1}\hat{p})_{i}- (\Delta ^{1}\hat{p})_{i-1}\right) \\= & {} -B^{T} \left( (\Delta ^{1}[\nabla \hat{f}])_{i}^{T}\hat{p}_{i+1} +\nabla \hat{f}_{i}^{T}(\Delta ^{1}\hat{p})_{i}\right) \\= & {} B^{T}\nabla \hat{f}_{i}^{T}\nabla \hat{f}_{i+1}^{T}\hat{p}_{i+1}-\, B^{T}h^{-1}\int _{\omega _{i}}\nabla _{xx}^{2} (\hat{p}_{i+1}^{T}\hat{f}[t])\,dt\cdot (\Delta ^{1}\hat{x})_{i}\\=: & {} \hat{P}_{i}+ \hat{R}_{i}\hat{u}_{i}. \end{aligned}$$

where \(\hat{f}[t]=f(\hat{x}(t))\), and \(\hat{x}(t)\) stands for the linear interpolation to \(\hat{x}_{i}, \hat{x}_{i+1}\) on \(\omega _{i}\). Therefore, the formula

$$\begin{aligned} \hat{R}_{i}-\,R_{i}=\, -B^{T}h^{-1}\int _{\omega _{i}}\left( \nabla _{xx}^{2}(\hat{p}_{i+1}^{T}\hat{f}[t])-\nabla _{xx}^{2}((p^{0})^{T}f^{0})_{i} \right) dt\cdot B \end{aligned}$$

leads to the desired estimates for the (discrete) \(L_{2}\) and \(L_{\infty }\) norms. Similarly, \(\Vert \hat{P}-P\Vert _{r}\) can be estimated for \(r\in \{2,\infty \}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felgenhauer, U. Discretization of semilinear bang-singular-bang control problems. Comput Optim Appl 64, 295–326 (2016). https://doi.org/10.1007/s10589-015-9800-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9800-2

Keywords

Mathematics Subject Classification

Navigation