Computational Optimization and Applications

, Volume 63, Issue 2, pp 495–522 | Cite as

Constructions of complementarity functions and merit functions for circular cone complementarity problem

  • Xin-He Miao
  • Shengjuan Guo
  • Nuo Qi
  • Jein-Shan Chen


In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem.


Circular cone complementarity problem Complementarity function Merit function The level sets Strong coerciveness 



Xin-He Miao work is supported by National Young Natural Science Foundation (No. 11101302 and No. 61002027) and National Natural Science Foundation of China (No. 11471241). Jein-Shan Chen work is supported by Ministry of Science and Technology, Taiwan.


  1. 1.
    Chen, J.-S.: A new merit function and its related properties for the second-order cone complementarity problem. Pac. J. Optim. 2, 167–179 (2006)MathSciNetMATHGoogle Scholar
  2. 2.
    Chen, J.-S.: Two classes of merit functions for the second-order cone complementarity problem. Math. Methods Oper. Res. 64, 495–519 (2006)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Chen, J.-S.: Conditions for error bounds and bounded level sets of some merit functions for the second-order cone complementarity problem. J. Optim. Theory Appl. 135, 459–473 (2007)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of second-order cone complementarity problem. Math. Program. 104, 293–327 (2005)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Chang, Y.-L., Yang, C.-Y., Chen, J.-S.: Smooth and nonsmooth analysis of vector-valued functions associated with circular cones. Nonlinear Anal.: Theory Methods Appl. 85, 160–173 (2013)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Meboo Publishing, California (2005)Google Scholar
  8. 8.
    Ding, C., Sun, D.F., Toh, K.-C.: An introduction to a class of matrix cone programming. Math. Program. 144, 141–179 (2014)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Ding, C.: An introduction to a class of matrix optimization problems, Ph.D. Thesis, National University of Singapore (2012)Google Scholar
  10. 10.
    Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second- order-cone complimentarity problems. SIAM J. Optim. 12, 436–460 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)Google Scholar
  12. 12.
    Han, D.R.: On the coerciveness of some merit functions for complimentarity problems over symmetric cones. J. Math. Anal. Appl. 336, 727–737 (2007)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Ko, C.-H., Chen, J.-S.: Optimal grasping manipulation for multifingered robots using semismooth Newton method. Math. Prob. Eng. 2013, Article ID 681710, 9 p. (2013)Google Scholar
  14. 14.
    Kong, L., Sun, J., Xiu, N.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Lu, N., Huang, Z.-H.: Three classes of merit functions for the complementarity problem over a closed convex cone. Optimization 62, 545–560 (2013)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Matsukawa, Y., Yoshise, A.: A primal barrier function Phase I algorithm for nonsymmetric conic optimization problems. Jpn. J. Ind. Appl. Math. 29, 499–517 (2012)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Pang, J.S.: Complementarity problems. In: Horst, R., Pardalos, P. (eds.) Handbook in Global Optimization. Kluwer Academic Publishers, Boston (1994)Google Scholar
  18. 18.
    Pan, S.-H., Chen, J.-S.: A one-parametric class of merit functions for the symmetric cone complementarity problem. J. Math. Anal. Appl. 355, 195–215 (2009)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Skajaa, A., Jorgensen, J.B., Hansen, P.C.: On implementing a homogeneous interior-point algorithm for nonsymmetric conic optimization, IMM-Technical Report, No. 2011–02 (2011)Google Scholar
  20. 20.
    Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Tseng, P.: Merit functions for semi-definite complementarity problems. Math. Program. 83, 159–185 (1998)MATHGoogle Scholar
  22. 22.
    Yamashita, N., Fukushima, M.: On the level-boundedness of the natural residual function for variational inequality problems. Pac. J. Optim. 1, 625–630 (2005)MathSciNetMATHGoogle Scholar
  23. 23.
    Zhou, J.-C., Chen, J.-S.: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14(4), 807–816 (2013)MathSciNetMATHGoogle Scholar
  24. 24.
    Zhou, J.-C., Chen, J.-S.: On the vector-valued functions associated with circular cones. Abstract Appl. Anal. 2014, Article ID 603542, 21 p. (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xin-He Miao
    • 1
  • Shengjuan Guo
    • 1
  • Nuo Qi
    • 1
  • Jein-Shan Chen
    • 2
  1. 1.Department of Mathematics, School of ScienceTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of MathematicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations