Computational Optimization and Applications

, Volume 63, Issue 2, pp 543–557 | Cite as

Reliable updates of the transformation in the iterative closest point algorithm



The update of the rigid body transformation in the iterative closest point (ICP) algorithm is considered. The ICP algorithm is used to solve surface registration problems where a rigid body transformation is to be found for fitting a set of data points to a given surface. Two regions for constraining the update of the rigid body transformation in its parameter space to make it reliable are introduced. One of these regions gives a monotone convergence with respect to the value of the mean square error and the other region gives an upper bound for this value. Point-to-plane distance minimization is then used to obtain the update of the transformation such that it satisfies the used constraint.


Convergence Iterative closest point Point-to-plane Point-to-point Registration 


  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Bergström, P., Edlund, O., Söderkvist, I.: Repeated surface registration for on-line use. Int. J. Adv. Manuf. Technol. 54, 677–689 (2011). doi: 10.1007/s00170-010-2950-6 CrossRefGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). doi: 10.1109/34.121791 CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992). doi: 10.1016/0262-8856(92)90066-C CrossRefGoogle Scholar
  5. 5.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)MATHGoogle Scholar
  6. 6.
    Hanson, R.J., Norris, M.J.: Analysis of measurements based on the singular value decomposition. SIAM J. Sci. Stat. Comput. 2(3), 363–373. doi: 10.1137/0902029. (1981)
  7. 7.
    Li, Y., Gu, P.: Free-form surface inspection techniques state of the art review. Comput. Aided Des. 36(13), 1395–1417. doi: 10.1016/j.cad.2004.02.009. (2004)
  8. 8.
    Li, Z., Gou, J., Chu, Y.: Geometric algorithms for workpiece localization. IEEE Trans. Robot. Autom. 14(6), 864–878 (1998). doi: 10.1109/70.736771 CrossRefGoogle Scholar
  9. 9.
    Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3d shapes. Int. J. Comput. Vision 67(3), 277–296. doi: 10.1007/s11263-006-5167-2. (2006)
  10. 10.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of the Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152. (2001)
  12. 12.
    Söderkvist, I.: Perturbation analysis of the orthogonal procrustes problem. BIT 33, 687–694 (1993)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Söderkvist, I., Wedin, P.Å.: Determining the movements of the skeleton using well-configured markers. J. Biomech. 26(12), 1473–1477 (1993)CrossRefGoogle Scholar
  14. 14.
    Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1), 579–589 (1991). doi: 10.1007/BF01759061 CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Zhu, L., Barhak, J., Srivatsan, V., Katz, R.: Efficient registration for precision inspection of free-form surfaces. Int. J. Adv. Manuf. Technol. 32, 505–515 (2007). doi: 10.1007/s00170-005-0370-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Mathematical Sciences, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden

Personalised recommendations