Skip to main content
Log in

Reliable updates of the transformation in the iterative closest point algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The update of the rigid body transformation in the iterative closest point (ICP) algorithm is considered. The ICP algorithm is used to solve surface registration problems where a rigid body transformation is to be found for fitting a set of data points to a given surface. Two regions for constraining the update of the rigid body transformation in its parameter space to make it reliable are introduced. One of these regions gives a monotone convergence with respect to the value of the mean square error and the other region gives an upper bound for this value. Point-to-plane distance minimization is then used to obtain the update of the transformation such that it satisfies the used constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  2. Bergström, P., Edlund, O., Söderkvist, I.: Repeated surface registration for on-line use. Int. J. Adv. Manuf. Technol. 54, 677–689 (2011). doi:10.1007/s00170-010-2950-6

    Article  Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). doi:10.1109/34.121791

    Article  Google Scholar 

  4. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992). doi:10.1016/0262-8856(92)90066-C

    Article  Google Scholar 

  5. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  6. Hanson, R.J., Norris, M.J.: Analysis of measurements based on the singular value decomposition. SIAM J. Sci. Stat. Comput. 2(3), 363–373. doi:10.1137/0902029. http://link.aip.org/link/?SCE/2/363/1 (1981)

  7. Li, Y., Gu, P.: Free-form surface inspection techniques state of the art review. Comput. Aided Des. 36(13), 1395–1417. doi:10.1016/j.cad.2004.02.009. http://www.sciencedirect.com/science/article/pii/S0010448504000430 (2004)

  8. Li, Z., Gou, J., Chu, Y.: Geometric algorithms for workpiece localization. IEEE Trans. Robot. Autom. 14(6), 864–878 (1998). doi:10.1109/70.736771

    Article  Google Scholar 

  9. Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3d shapes. Int. J. Comput. Vision 67(3), 277–296. doi:10.1007/s11263-006-5167-2. (2006)

  10. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  11. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of the Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152. http://citeseer.ist.psu.edu/rusinkiewicz01efficient.html (2001)

  12. Söderkvist, I.: Perturbation analysis of the orthogonal procrustes problem. BIT 33, 687–694 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Söderkvist, I., Wedin, P.Å.: Determining the movements of the skeleton using well-configured markers. J. Biomech. 26(12), 1473–1477 (1993)

    Article  Google Scholar 

  14. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1), 579–589 (1991). doi:10.1007/BF01759061

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, L., Barhak, J., Srivatsan, V., Katz, R.: Efficient registration for precision inspection of free-form surfaces. Int. J. Adv. Manuf. Technol. 32, 505–515 (2007). doi:10.1007/s00170-005-0370-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Bergström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergström, P. Reliable updates of the transformation in the iterative closest point algorithm. Comput Optim Appl 63, 543–557 (2016). https://doi.org/10.1007/s10589-015-9771-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9771-3

Keywords

Navigation