Computational Optimization and Applications

, Volume 63, Issue 2, pp 543–557 | Cite as

Reliable updates of the transformation in the iterative closest point algorithm

  • Per Bergström


The update of the rigid body transformation in the iterative closest point (ICP) algorithm is considered. The ICP algorithm is used to solve surface registration problems where a rigid body transformation is to be found for fitting a set of data points to a given surface. Two regions for constraining the update of the rigid body transformation in its parameter space to make it reliable are introduced. One of these regions gives a monotone convergence with respect to the value of the mean square error and the other region gives an upper bound for this value. Point-to-plane distance minimization is then used to obtain the update of the transformation such that it satisfies the used constraint.


Convergence Iterative closest point Point-to-plane Point-to-point Registration 


  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Bergström, P., Edlund, O., Söderkvist, I.: Repeated surface registration for on-line use. Int. J. Adv. Manuf. Technol. 54, 677–689 (2011). doi: 10.1007/s00170-010-2950-6 CrossRefGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). doi: 10.1109/34.121791 CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992). doi: 10.1016/0262-8856(92)90066-C CrossRefGoogle Scholar
  5. 5.
    Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)MATHGoogle Scholar
  6. 6.
    Hanson, R.J., Norris, M.J.: Analysis of measurements based on the singular value decomposition. SIAM J. Sci. Stat. Comput. 2(3), 363–373. doi: 10.1137/0902029. (1981)
  7. 7.
    Li, Y., Gu, P.: Free-form surface inspection techniques state of the art review. Comput. Aided Des. 36(13), 1395–1417. doi: 10.1016/j.cad.2004.02.009. (2004)
  8. 8.
    Li, Z., Gou, J., Chu, Y.: Geometric algorithms for workpiece localization. IEEE Trans. Robot. Autom. 14(6), 864–878 (1998). doi: 10.1109/70.736771 CrossRefGoogle Scholar
  9. 9.
    Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3d shapes. Int. J. Comput. Vision 67(3), 277–296. doi: 10.1007/s11263-006-5167-2. (2006)
  10. 10.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of the Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152. (2001)
  12. 12.
    Söderkvist, I.: Perturbation analysis of the orthogonal procrustes problem. BIT 33, 687–694 (1993)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Söderkvist, I., Wedin, P.Å.: Determining the movements of the skeleton using well-configured markers. J. Biomech. 26(12), 1473–1477 (1993)CrossRefGoogle Scholar
  14. 14.
    Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1), 579–589 (1991). doi: 10.1007/BF01759061 CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Zhu, L., Barhak, J., Srivatsan, V., Katz, R.: Efficient registration for precision inspection of free-form surfaces. Int. J. Adv. Manuf. Technol. 32, 505–515 (2007). doi: 10.1007/s00170-005-0370-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Mathematical Sciences, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden

Personalised recommendations