Computational Optimization and Applications

, Volume 58, Issue 2, pp 483–501 | Cite as

CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems

  • Liyan Xu
  • Bo Yu


We reformulate a stochastic nonlinear complementarity problem as a stochastic programming problem which minimizes an expected residual defined by a restricted NCP function with nonnegative constraints and CVaR constraints which guarantee the stochastic nonlinear function being nonnegative with a high probability. By applying smoothing technique and penalty method, we propose a penalized smoothing sample average approximation algorithm to solve the CVaR-constrained stochastic programming. We show that the optimal solution of the penalized smoothing sample average approximation problem converges to the solution of the corresponding nonsmooth CVaR-constrained stochastic programming problem almost surely. Finally, we report some preliminary numerical test results.


Stochastic complementarity problems Sample average approximation CVaR Penalized smoothing method R0 function 



The research was supported by the National Natural Science Foundation of China (11171051, 91230103).


  1. 1.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Chen, B., Harker, P.T.: Smooth approximations to nonlinear complementarity problems. SIAM J. Optim. 7, 403–420 (1997) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, X., Lin, G.H.: CVaR-based formulation and approximation method for stochastic variational inequalities. Numer. Algebra Control Optim. 1, 35–48 (2011) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, X., Wets, R.J.B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22, 649–673 (2012) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems vol. 1. Springer, New York (2003) Google Scholar
  8. 8.
    Fang, H., Chen, X., Fukushima, M.: Stochastic R 0 matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 66–713 (1997) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program., Ser. B 48, 161–220 (1990) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hamatani, K., Fukushima, M.: Pricing American options with uncertain volatility through stochastic linear complementarity models. Comput. Optim. Appl. 50, 263–286 (2011) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. Wiley, New York (1986) CrossRefMATHGoogle Scholar
  14. 14.
    Lin, G.H., Chen, X., Fukushima, M.: New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC. Optimization 56, 641–653 (2007) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lin, G.H., Fukushima, M.: New reformulations for stochastic nonlinear complementarity problems. Optim. Methods Softw. 21, 551–564 (2006) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Lin, G.H.: Combined Monte Carlo sampling and penalty method for stochastic nonlinear complementarity problems. Math. Comput. 78, 1671–1686 (2009) CrossRefMATHGoogle Scholar
  17. 17.
    Lin, G.H., Fukushima, M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: a survey. Pac. J. Optim. 6, 455–482 (2010) MATHMathSciNetGoogle Scholar
  18. 18.
    Ling, C., Qi, L., Zhou, G., Caccetta, L.: The SC 1 property of an expected residual function arising from stochastic complementarity problems. Oper. Res. Lett. 36, 456–460 (2008) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Heidelberg (2004) Google Scholar
  21. 21.
    Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000) Google Scholar
  22. 22.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009) CrossRefGoogle Scholar
  23. 23.
    Wang, M., Ali, M.M.: Stochastic nonlinear complementarity problems: stochastic programming reformulation and penalty-based approximation method. J. Optim. Theory Appl. 144, 597–614 (2010) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Wu, D., Han, J.Y., Zhu, J.H.: Robust solutions to uncertain linear complementarity problems. Acta Math. Appl. Sin. 27, 339–352 (2011) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Yamashita, N.: Properties of restricted NCP functions for nonlinear complementarity problems. J. Optim. Theory Appl. 98, 701–717 (1998) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Zhang, C., Chen, X.: Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty. J. Optim. Theory Appl. 137, 277–295 (2008) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Zhou, G.L., Caccetta, L.: Feasible semismooth Newton method for a class of stochastic linear complementarity problems. J. Optim. Theory Appl. 139, 379–392 (2008) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhou, J.C., Xiu, N.H., Chen, J.S.: Solution properties and error bounds for semi-infinite complementarity problems. J. Ind. Manag. Optim. 9, 99–115 (2013) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianChina
  2. 2.College of ScienceHarbin Engineering UniversityHarbinChina

Personalised recommendations