Advertisement

Algorithmic aspects of sums of Hermitian squares of noncommutative polynomials

  • Sabine Burgdorf
  • Kristijan Cafuta
  • Igor Klep
  • Janez Povh
Article

Abstract

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of Hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper several examples are given illustrating the results.

Keywords

Sum of squares Semidefinite programming Noncommutative polynomial Matlab toolbox Newton polytope Free positivity 

Notes

Acknowledgements

The authors thank the three anonymous referees whose attentive comments helped improve the paper.

References

  1. 1.
    Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. (2012). doi: 10.1007/s10107-011-0505-8. http://www.optimization-online.org/DB_HTML/2010/04/2595.html Google Scholar
  2. 2.
    Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16(11), 2318–2325 (1975) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26(3), 363–380 (2011). http://ncsostools.fis.unm.si/ MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Jacob, B., Rosenberg, A. (eds.) K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, CA, 1992. Proc. Sympos. Pure Math., vol. 58, pp. 103–126. Am. Math. Soc., Providence (1995) Google Scholar
  5. 5.
    Connes, A.: Classification of injective factors. Cases II1, II, IIIλ, λ≠1. Ann. Math. 104, 73–115 (1976) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    de Oliveira, M.C., Helton, J.W., McCullough, S., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. IMA Vol. Math. Appl., vol. 149, pp. 17–61. Springer, New York (2008) CrossRefGoogle Scholar
  7. 7.
    Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12(4), 1090–1099 (2002) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Helton, J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. Math. 156(2), 675–694 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. J. Symb. Comput. 47(1), 1–15 (2012) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Klep, I., Povh, J.: Semidefinite programming and sums of Hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Klep, I., Schweighofer, M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Klep, I., Schweighofer, M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys. 133(4), 739–760 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/01) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lassere, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press Optimization Series, vol. 1. Imperial College Press, London (2009) CrossRefGoogle Scholar
  15. 15.
    McCullough, S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326(1–3), 193–203 (2001) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mittelmann, D.: An independent benchmarking of SDP and SOCP solvers. Math. Program., Ser. B 95, 407–430 (2003). http://plato.asu.edu/bench.html MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    McCullough, S., Putinar, M.: Noncommutative sums of squares. Pac. J. Math. 218(1), 167–171 (2005) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program., Ser. B 96(2), 293–320 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry, Piscataway, NJ, 2001. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 60, pp. 83–99. Am. Math. Soc., Providence (2003) Google Scholar
  23. 23.
    Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45(2), 363–374 (1978) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Stahl, H.R.: Proof of the BMV conjecture. arXiv:1107.4875
  27. 27.
    Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic, Boston (2000). Theory, Algorithms, and Applications CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sabine Burgdorf
    • 1
  • Kristijan Cafuta
    • 2
  • Igor Klep
    • 3
  • Janez Povh
    • 4
  1. 1.SB-MATHGEOM-EGGEPFLLausanneSwitzerland
  2. 2.Fakulteta za elektrotehniko, Laboratorij za uporabno matematikoUniverza v LjubljaniLjubljanaSlovenia
  3. 3.Department of MathematicsThe University of AucklandAucklandNew Zealand
  4. 4.Fakulteta za informacijske študije v Novem mestuNovo mestoSlovenia

Personalised recommendations