Computational Optimization and Applications

, Volume 53, Issue 2, pp 453–483 | Cite as

Interior point methods for equilibrium problems

  • Nils Langenberg


In the present paper we discuss three methods for solving equilibrium-type fixed point problems. Concentrating on problems whose solutions possess some stability property, we establish convergence of these three proximal-like algorithms that promise a very high numerical tractability and efficiency. For example, due to the implemented application of zone coercive Bregman functions, all these methods allow to treat the generated subproblems as unconstrained and, partly, explicitly solvable ones.


Equilibrium problems Fixed point problems Bregman distances Proximal-like methods Interior point effect 



The author is grateful to one reviewer for his or her constructive remarks.


  1. 1.
    Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12(1–3), 31–40 (1999) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1–4), 123–145 (1994) MathSciNetMATHGoogle Scholar
  3. 3.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) MATHGoogle Scholar
  4. 4.
    Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cavazutti, E., Pappalardo, M., Passacantando, M.: Nash equilibria, variational inequalities and dynamical systems. J. Optim. Theory Appl. 114(3), 491–506 (2002) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73(3), 451–464 (1992) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Censor, Y., Iusem, A.N., Zenios, S.A.: An interior point method with Bregman functions for the variational inequality problem with paramonotone operators. Math. Program. 81(3), 373–400 (1998) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3(3), 538–543 (1993) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Cohen, G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59(2), 325–333 (1988) MathSciNetMATHGoogle Scholar
  10. 10.
    Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with application to convex programming. Math. Oper. Res. 18(1), 202–226 (1993) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003) Google Scholar
  13. 13.
    Flåm, S.D.: Paths to constrained Nash equilibria. Appl. Math. Optim. 27(3), 275–289 (1993) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Flåm, S.D.: Learning equilibrium play: a myopic approach. Comput. Optim. Appl. 14(1), 87–102 (1999) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Flåm, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 77(1), 29–41 (1997) Google Scholar
  16. 16.
    Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993) Google Scholar
  17. 17.
    Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18(2), 489–503 (2011) MathSciNetMATHGoogle Scholar
  18. 18.
    Iusem, A.N., Nasri, M.: Inexact Proximal Point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 28(11–12), 1279–1308 (2007) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Iusem, A.N., Sosa, W.: On the Proximal Point Method for equilibrium problems in Hilbert spaces. Optimization 59(8), 1259–1274 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program., Ser. B 116(1–2), 259–273 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kaplan, A., Tichatschke, R.: On inexact generalized proximal methods with a weakened error tolerance criterion. Optimization 53(1), 3–17 (2004) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kaplan, A., Tichatschke, R.: Note on the paper: Interior proximal method for variational inequalities on non-polyhedral sets. Discuss. Math., Differ. Incl. Control Optim. 30, 51–59 (2010) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Konnov, I.V.: Application of the Proximal Point Method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119(2), 317–333 (2003) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976) MATHGoogle Scholar
  25. 25.
    Krawczyk, J.B.: Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems. Comput. Manag. Sci. 4(2), 183–204 (2007) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000) CrossRefGoogle Scholar
  27. 27.
    Kubota, K., Fukushima, M.: Gap function approach to the Generalized Nash equilibrium problem. J. Optim. Theory Appl. 144(3), 511–531 (2010) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Langenberg, N.: Interior proximal methods for equilibrium programming. Part I. Optimization (to appear). doi: 10.1080/02331934.2011.625028
  29. 29.
    Langenberg, N.: Interior proximal methods for equilibrium programming. Part II. Optimization (to appear). doi: 10.1080/02331934.2011.627334
  30. 30.
    Langenberg, N.: Pseudomonotone operators and the Bregman Proximal Point Algorithm. J. Glob. Optim. 47(4), 537–555 (2010) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, pp. 289–298. Kluwer, Dordrecht (2003) CrossRefGoogle Scholar
  32. 32.
    Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122(2), 371–386 (2004) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Van Nguyen, T.T., Strodiot, J.-J., Nguyen, V.H.: A bundle method for solving equilibrium problems. Math. Program., Ser. B 116(1–2), 529–552 (2009) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Van Nguyen, T.T., Strodiot, J.-J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Glob. Optim. 44(2), 175–192 (2009) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    von Heusinger, A., Kanzow, C.: Optimization reformulations of the Generalized Nash Equilibrium Problem using Nikaido-Isoda-type functions. Comput. Optim. Appl. 43(3), 353–377 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TrierTrierGermany

Personalised recommendations