Advertisement

Computational Optimization and Applications

, Volume 52, Issue 3, pp 785–803 | Cite as

A Lyusternik–Graves theorem for the proximal point method

  • Francisco J. Aragón Artacho
  • Michaël Gaydu
Article

Abstract

We consider a generalized version of the proximal point algorithm for solving the perturbed inclusion yT(x), where y is a perturbation element near 0 and T is a set-valued mapping acting from a Banach space X to a Banach space Y which is metrically regular around some point \(({\bar{x}},0)\) in its graph. We study the behavior of the convergent iterates generated by the algorithm and we prove that they inherit the regularity properties of T, and vice versa. We analyze the cases when the mapping T is metrically regular and strongly regular.

Keywords

Proximal point algorithm Generalized equations Perturbations Metric regularity Strong regularity 

Notes

Acknowledgements

The authors would like to thank two anonymous referees for their valuable suggestions and remarks that allowed us to improve the quality of the paper. Research of the first author was partially supported by Ministerio de Ciencia e Innovación (Spain), grant MTM2008-06695-C03-01 and program “Juan de la Cierva.” Research of the second author was partially supported by Contract EA4540 (France).

References

  1. 1.
    Aragón Artacho, F.J., Dontchev, A.L., Geoffroy, M.H.: Convergence of the proximal point method for metrically regular mappings. ESAIM Proc. 17, 1–8 (2007) MATHCrossRefGoogle Scholar
  2. 2.
    Aragón Artacho, F.J., Geoffroy, M.H.: Uniformity and inexact version of a proximal method for metrically regular mappings. J. Math. Anal. Appl. 335(1), 168–183 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aragón Artacho, F.J., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15(2), 365–380 (2008) MathSciNetMATHGoogle Scholar
  4. 4.
    Aragón Artacho, F.J., Dontchev, A.L., Gaydu, M., Geoffroy, M.H., Veliov, V.M.: Metric regularity of Newton’s iteration. SIAM J. Control Optim. 49(2), 339–362 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aubin, J.P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Boston (1990) MATHGoogle Scholar
  6. 6.
    Dontchev, A.L., Hager, W.W.: An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121(2), 481–489 (1994) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12(1–2), 79–109 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer Mathematics Monographs. Springer, Dordrecht (2009) MATHCrossRefGoogle Scholar
  9. 9.
    Dontchev, A.L., Rockafellar, R.T.: Newton’s method for generalized equations: a sequential implicit function theorem. Math. Program. 123(1), 139–159 (2010) Ser. B MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gaydu, M.: Stability properties of Tikhonov regularization for nonmonotone inclusions. J. Global Optim. to appear Google Scholar
  11. 11.
    Geoffroy, M.H.: Stability of Mann’s iterates under metric regularity. Appl. Math. Comput. 215(2), 686–694 (2009) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hager, W.W., Zhang, H.: Self-adaptive inexact proximal point methods. Comput. Optim. Appl. 39(2), 161–181 (2008) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Humes, C., Silva, P.: Inexact proximal point algorithms and descent methods in optimization. Optim. Eng. 6(2), 257–271 (2005) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Ioffe, A.D.: Metric regularity and subdifferential calculus. Usp. Mat. Nauk 55(3(333)), 103–162 (2000) (in Russian); translation in Russian Math. Surveys 55(3), 501–558 (2000) MathSciNetGoogle Scholar
  15. 15.
    Iusem, A.N., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13(4), 1080–1097 (2003) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13(4), 389–406 (1998) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Marino, G., Xu, H.-K.: Convergence of generalized proximal point algorithms. Commun. Pure Appl. Anal. 3(4), 791–808 (2004) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Leventhal, D.: Metric subregularity and the proximal point method. J. Math. Anal. Appl. 360(2), 681–688 (2009) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–158 (1970) Ser. R-3 MathSciNetMATHGoogle Scholar
  20. 20.
    Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340(1), 1–35 (1993) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006) Google Scholar
  22. 22.
    Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970) MathSciNetMATHGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1997) Google Scholar
  28. 28.
    Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999) MathSciNetMATHGoogle Scholar
  29. 29.
    Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22(7–8), 1013–1035 (2001) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Yang, Z., He, B.: A relaxed approximate proximal point algorithm. Ann. Oper. Res. 133, 119–125 (2005) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francisco J. Aragón Artacho
    • 1
  • Michaël Gaydu
    • 2
  1. 1.Department of Statistics and Operations ResearchUniversity of AlicanteAlicanteSpain
  2. 2.LAMIA, Dpt. de MathématiquesUniversité Antilles-GuyanePointe-à-PitreFrance

Personalised recommendations