A numerical algorithm for finding solutions of a generalized Nash equilibrium problem



A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (Optimization 52:301–316, 2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.


Convex feasibility problem Generalized Nash equilibrium problem Projection methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35, 159–164 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52, 301–316 (2003) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621–635 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18(4), 445–454 (1976) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Krawczyk, J.B., Uryasev, S.: relaxations algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000) CrossRefGoogle Scholar
  8. 8.
    McKenzie, L.W.: On the existence of a general equilibrium for a competitive market. Econometrica 27, 54–71 (1959) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Pang, J.S., Hobbs, B.F.: Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55(1), 113–127 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33, 520–534 (1965) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luiz Carlos Matioli
    • 2
  • Wilfredo Sosa
    • 1
  • Jinyun Yuan
    • 2
  1. 1.Instituto de Matemática y Ciencias AfinesUniversidad Nacional de IngenieriaLimaPeru
  2. 2.Departamento de MatemáticaUFPRCuritibaBrazil

Personalised recommendations