Advertisement

Computational Optimization and Applications

, Volume 48, Issue 2, pp 309–324 | Cite as

Minimization of the Tikhonov functional in Banach spaces smooth and convex of power type by steepest descent in the dual

  • Kamil S. Kazimierski
Article

Abstract

For Tikhonov functionals of the form Ψ(x)=‖Axy Y r +αx X q we investigate a steepest descent method in the dual of the Banach space X. We show convergence rates for the proposed method and present numerical tests.

Keywords

Convex optimization Convergence rate Linear convergence Sparsity Smooth of power type Convex of power type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, Y., Iusem, A., Solodov, M.: Minimization of nonsmooth convex functionals in Banach spaces. J. Convex Anal. 4(2), 235–255 (1997) MATHMathSciNetGoogle Scholar
  2. 2.
    Bonesky, T., Kazimierski, K., Maass, P., Schöpfer, F., Schuster, T.: Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. 2008, Article ID 192,679, 19 pages (2008). doi: 10.1155/2008/192679
  3. 3.
    Bredies, K., Lorenz, D.: Iterated hard shrinkage for minimization problems with sparsity constraints. Preprint Series of the DFG priority program 1114 (2006) Google Scholar
  4. 4.
    Bredies, K., Lorenz, D., Maass, P.: A generalized conditional gradient method and its connection to an iterative shrinkage method. Comput. Optim. Appl. 42(2), 173–193 (2009) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bregman, L.M.: The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967) CrossRefGoogle Scholar
  6. 6.
    Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Probl. 20(5), 1411–1420 (2004) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht (1990) MATHGoogle Scholar
  8. 8.
    Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004) CrossRefMATHGoogle Scholar
  9. 9.
    Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1993) MATHGoogle Scholar
  10. 10.
    Dunn, J.C.: Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM J. Control Optim. 17, 187–211 (1979) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976) MATHGoogle Scholar
  12. 12.
    Hanner, O.: On the uniform convexity of L p and p. Ark. Mat. 3, 239–244 (1956) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hofmann, B., Kaltenbacher, B., Pöschl, C., Scherzer, O.: A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 23(3), 987–1010 (2007). http://stacks.iop.org/0266-5611/23/987 CrossRefMATHGoogle Scholar
  14. 14.
    Resmerita, E.: Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Probl. 21(4), 1303–1314 (2005) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Resmerita, E., Scherzer, O.: Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Probl. 22(3), 801–814 (2006) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schöpfer, F., Louis, A., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22, 311–329 (2006) CrossRefMATHGoogle Scholar
  17. 17.
    Xu, Z.B., Roach, G.: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 157, 189–210 (1991) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Industrial Mathematics (ZeTeM)University of BremenBremenGermany

Personalised recommendations