Computational Optimization and Applications

, Volume 48, Issue 2, pp 325–340 | Cite as

Minimal containment under homothetics: a simple cutting plane approach



Minimal containment problems arise in a variety of applications, such as shape fitting and packing problems, data clustering, pattern recognition, or medical surgery. Typical examples are the smallest enclosing ball, cylinder, slab, box, or ellipsoid of a given set of points.

Here we focus on one of the most basic problems: minimal containment under homothetics, i.e., covering a point set by a minimally scaled translation of a given container. Besides direct applications this problem is often the base in solving much harder containment problems and therefore fast solution methods are needed, especially in moderate dimensions. While in theory the ellipsoid method suffices to show polynomiality in many cases, extensive studies of implementations exist only for Euclidean containers. Indeed, many applications require more complicated containers.

In Plastria (Eur. J. Oper. Res. 29:98–110, 1987) the problem is discussed in a more general setting from the facility location viewpoint and a cutting plane method is suggested. In contrast to Plastria (Eur. J. Oper. Res. 29:98–110, 1987), our approach relies on more and more accurate approximations of the container. For facet and vertex presented polytopal containers the problem can be formulated as an LP, and for many general containers as an SOCP. The experimental section of the paper compares those formulations to the cutting plane method, showing that it outperforms the LP formulations for vertex presented containers and the SOCP formulation for some problem instances.


Containment Core sets Cutting planes Outer radius 1-center Convex optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. MSRI Publications, vol. 52. Cambridge University Press, Cambridge (2005) Google Scholar
  2. 2.
    Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Springer, Berlin (1974). Translation: Theory of Convex Bodies. BCS Associates, Moscow, Idaho (USA) (1987) MATHGoogle Scholar
  3. 3.
    Brandenberg, R., Roth, L.: New algorithms for k-center and extensions. J. Comb. Optim. (2009, to appear) Google Scholar
  4. 4.
    Brandenberg, R., Gerken, T., Gritzmann, P., Roth, L.: Modeling and optimization of correction measures for human extremities. In: Jäger, W., Krebs, H.-J. (eds.) Mathematics—Key Technology for the Future. Joint Projects between Universities and Industry 2004–2007, pp. 131–148. Springer, Berlin (2008) Google Scholar
  5. 5.
    Bădoiu, M., Clarkson, K.L.: Smaller coresets for balls. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pp. 801–802 (2003) Google Scholar
  6. 6.
    Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Annual ACM Symposium on Theory of Computing archive. Proc. 34th Annu. ACM Sympos. Theory of Computing, pp. 250–257. ACM, New York (2002) Google Scholar
  7. 7.
    Eaves, B.C., Freund, R.M.: Optimal scaling of balls and polyhedra. Math. Program. 23, 138–147 (1982) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In: Proc. 11th Annual European Symposium on Algorithms (ESA), pp. 630–641 (2003) Google Scholar
  9. 9.
    Gärtner, B.: Fast and robust smallest enclosing balls. In: Proc. 7th Annu. European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 1643, pp. 325–338. Springer, Berlin (1999) Google Scholar
  10. 10.
    Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (2005) Google Scholar
  11. 11.
    Grant, M., Boyd, S., Ye, Y.: cvx Users’ guide, version 1.0., June 2006
  12. 12.
    Gritzmann, P., Klee, V.: Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces. Math. Program. 59, 163–213 (1993) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity I: Containment problems. Discrete Math. 136, 129–174 (1994) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993) MATHGoogle Scholar
  15. 15.
    Halperin, D., Sharir, M., Goldberg, K.: The 2-center problem with obstacles. J. Algorithms 42, 109–134 (2002) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Klee, V.: Circumspheres and inner products. Math. Scand. 8, 363–370 (1960) MathSciNetGoogle Scholar
  17. 17.
    Kumar, P., Mitchell, J.S.B., Yıldırım, E.A.: Approximate minimum enclosing balls in high dimensions using core-sets. J. Exp. Algorithmics 8, 1.1 (2003) CrossRefGoogle Scholar
  18. 18.
    Nielsen, F., Nock, R.: Approximating smallest enclosing balls. In: Nielsen, F., Nock, R. (eds.) Proceedings of International Conference on Computational Science and Its Applications (ICCSA). Lecture Notes in Computer Science, vol. 3045. Springer, Berlin (2004) Google Scholar
  19. 19.
    Plastria, F.: Solving general continous single facility location problems by cutting planes. Eur. J. Oper. Res. 29, 98–110 (1987) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pólik, I.: Addendum to the SeDuMi user guide version 1.1. Technical report, Advanced Optimization Laboratory, McMaster University (2005) Google Scholar
  21. 21.
    Roth, L.: Exakte und ε-approximative Algorithmen zur Umkugelberechnung. Diploma thesis, Zentrum Mathematik, TU München, October 2005 Google Scholar
  22. 22.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993) CrossRefMATHGoogle Scholar
  23. 23.
    Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11-12, 625–653 (1999) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. Lecture Notes in Computer Science, vol. 555, pp. 359–370. Springer, Berlin (1991) CrossRefGoogle Scholar
  25. 25.
    Yao, A.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11, 721–736 (1982) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Zhou, G.L., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Comput. Optim. Appl. 30(2), 147–160 (2005) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Zentrum MathematikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations