Skip to main content
Log in

A fast steady-state ε-dominance multi-objective evolutionary algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Multi-objective evolutionary algorithms (MOEAs) have become an increasingly popular tool for design and optimization tasks in real-world applications. Most of the popular baseline algorithms are pivoted on the use of Pareto-ranking (that is empirically inefficient) to improve the convergence to the Pareto front of a multi-objective optimization problem. This paper proposes a new ε-dominance MOEA (EDMOEA) which adopts pair-comparison selection and steady-state replacement instead of the Pareto-ranking. The proposed algorithm is an elitist algorithm with a new preservation technique of population diversity based on the ε-dominance relation. It is demonstrated that superior results could be obtained by the EDMOEA compared with other algorithms: NSGA-II, SPEA2, IBEA, ε-MOEA, PESA and PESA-II on test problems. The EDMOEA is able to converge to the Pareto optimal set much faster especially on the ZDT test functions with a large number of decision variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece (2001)

  3. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Parallel Problem Solving from Nature, PPSN VIII. Lecture Notes in Computer Science, vol. 3242, pp. 832–842. Springer, Berlin (2004)

    Chapter  Google Scholar 

  4. Knowles, J., Corne, D.: The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the Congress on Evolutionary Computation, Washington, DC (1999)

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Srinivasan, D., Rachmawati, L.: An efficient multi-objective evolutionary algorithm with steady-state replacement model. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington (2006)

  7. Valenzuela, C.L.: A simple evolutionary algorithm for multi-objective optimization (SEAMO). In: Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI (2002)

  8. Rajeev, K., Peter, R.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evol. Comput. 10(3), 283–314 (2002)

    Article  Google Scholar 

  9. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  10. Deb, K., Mohan, M., Mishra, S.: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol. Comput. 13(4), 501–525 (2005)

    Article  Google Scholar 

  11. Chinchuluun, A., Pardalos, P.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Article  MathSciNet  Google Scholar 

  13. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  14. Ikeda, K., Kita, H., Kobayashi, S.: Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea (2001)

  15. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective optimization. In: Workshop on Multiple Objective Metaheuristics (MOMH 2002), Berlin, Germany (2004)

  16. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithm. Wiley, New York (2001)

    Google Scholar 

  17. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  19. Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, Canada (2006)

  20. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (2001)

  21. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

    Article  Google Scholar 

  22. Liu, L., Li, M., Lin, D.: A novel epsilon-dominance multi-objective evolutionary algorithms for solving DRS multi-objective optimization problems. In: Third International Conference on Natural Computation, Haikou, HaiNan (2007)

  23. Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.: Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, England (2007)

  24. Parks, G.T., Miller, I.: Selective breeding in a multiobjective genetic algorithm. In: Parallel Problem Solving from Nature, PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 250–259. Springer, Berlin (1998)

    Chapter  Google Scholar 

  25. Deb, K., Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: First International Conference on Evolutionary Multi-Criterion Optimization, Zurich (2001)

  26. Hu, J., Seo, K., Fan, Z., Rosenberg, R.C., Goodman, E.D.: Hemo: A sustainable multi-objective evolutionary optimization framework. In: Genetic and Evolutionary Computation Conference, Washington, DC (2003)

  27. Sierra, M.R., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Evolutionary Multi-Criterion Optimization, vol. 3410, pp. 505–519 (2005)

  28. Wu, J., Azarm, S.: Metrics for quality assessment of a multiobjective design optimization solution set. J. Mech. Des. 123(1), 18–25 (2001)

    Article  Google Scholar 

  29. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  30. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(1), 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Deb, K., Goyal, M.: A combined genetic adaptive search GeneAS for engineering design. Comput. Sci. Inform. 26(4), 30–45 (1996)

    Google Scholar 

  32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  33. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland (2006)

  34. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  35. Rosner, B.: Fundamentals of Biostatistics, 4th edn. Duxbury, Boston (1995)

    Google Scholar 

  36. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature (1996)

  37. Laumanns, M., Zitzler, E., Thiele, L.: A unified model for multi-objective evolutionary algorithms with elitism. In: Proceedings of the 2000 Congress on Evolutionary Computation, California (2000)

  38. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. Technical Report, Computer Engineering and Networks Laboratory, ETH Zurich (2001)

  39. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Evolutionary Multi-Criterion Optimization, vol. 742–756 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Liu, L. & Lin, D. A fast steady-state ε-dominance multi-objective evolutionary algorithm. Comput Optim Appl 48, 109–138 (2011). https://doi.org/10.1007/s10589-009-9241-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9241-x

Keywords

Navigation