Computational Optimization and Applications

, Volume 45, Issue 2, pp 427–462

# Correlation stress testing for value-at-risk: an unconstrained convex optimization approach

Article

## Abstract

Correlation stress testing is employed in several financial models for determining the value-at-risk (VaR) of a financial institution’s portfolio. The possible lack of mathematical consistence in the target correlation matrix, which must be positive semidefinite, often causes breakdown of these models. The target matrix is obtained by fixing some of the correlations (often contained in blocks of submatrices) in the current correlation matrix while stressing the remaining to a certain level to reflect various stressing scenarios. The combination of fixing and stressing effects often leads to mathematical inconsistence of the target matrix. It is then naturally to find the nearest correlation matrix to the target matrix with the fixed correlations unaltered. However, the number of fixed correlations could be potentially very large, posing a computational challenge to existing methods. In this paper, we propose an unconstrained convex optimization approach by solving one or a sequence of continuously differentiable (but not twice continuously differentiable) convex optimization problems, depending on different stress patterns. This research fully takes advantage of the recently developed theory of strongly semismooth matrix valued functions, which makes fast convergent numerical methods applicable to the underlying unconstrained optimization problem. Promising numerical results on practical data (RiskMetrics database) and randomly generated problems of larger sizes are reported.

## Keywords

Stress testing Convex optimization Newton’s method Augmented Lagrangian functions

## References

1. 1.
Alexander, C.: Market Models: A Guide to Financial Data Analysis. Wiley, New York (2001) Google Scholar
2. 2.
Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111–128 (1997)
3. 3.
Arnold, V.I.: On matrices depending on parameters. Rus. Math. Surv. 26, 29–43 (1971)
4. 4.
Bai, Z.-J., Chu, D., Sun, D.F.: A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM J. Sci. Comput. 29, 2531–2561 (2007)
5. 5.
Bhansali, V., Wise, B.: Forecasting portfolio risk in normal and stressed market. J. Risk 4(1), 91–106 (2001) Google Scholar
6. 6.
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
7. 7.
Boyd, S., Xiao, L.: Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27, 532–546 (2005)
8. 8.
Chen, X., Qi, H.D., Tseng, P.: Analysis of nonsmooth symmetric matrix valued functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)
9. 9.
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
10. 10.
Dash, J.W.: Quantitative Finance and Risk Management: A Physicist’s Approach. World Scientific, Singapore (2004)
11. 11.
Eaves, B.C.: On the basic theorem of complementarity. Math. Program. 1, 68–75 (1971)
12. 12.
Fender, I., Gibson, M.S., Mosser, P.C.: An international survey of stress tests. Federal Reserve Bank of New York, Current Issues in Economics and Finance, vol. 7, No. 10 (2001) Google Scholar
13. 13.
Finger, C.: A methodology for stress correlation. In: Risk Metrics Monitor, Fourth Quarter (1997) Google Scholar
14. 14.
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)
15. 15.
Higham, N.J.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002)
16. 16.
Kercheval, A.N.: On Rebonato and Jäckel’s parametrization method for finding nearest correlation matrices. Int. J. Pure Appl. Math. 45, 383–390 (2008)
17. 17.
Kupiec, P.H.: Stress testing in a Value-at-Risk framework. J. Deriv. 6(1), 7–24 (1998)
18. 18.
León, A., Peris, J.E., Silva, J., Subiza, B.: A note on adjusting correlation matrices. Appl. Math. Finance 9, 61–67 (2002)
19. 19.
Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26, 272–284 (2004)
20. 20.
J.P. Morgan/Reuters: RiskMetrics—Technical Document, 4th edn. New York (1996) Google Scholar
21. 21.
Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)
22. 22.
Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)
23. 23.
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
24. 24.
Rapisarda, F., Brigo, D., Mercurio, F.: Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18, 55–73 (2007)
25. 25.
Rebonato, R., Jäckel, P.: The most general methodology for creating a valid correlation matrix for risk management and option pricing purpose. J. Risk 2(2), 17–27 (2000) Google Scholar
26. 26.
Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)
27. 27.
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
28. 28.
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)
29. 29.
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
30. 30.
Sun, D.F.: The strong second order sufficient condition and the constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)
31. 31.
Sun, D.F., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
32. 32.
Sun, D.F., Sun, J., Zhang, L.W.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008)
33. 33.
Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3, 135–164 (2007)
34. 34.
Turkay, S., Epperlein, E., Christofides, N.: Correlation stress testing for value-at-risk. J. Risk 5(4), 75–89 (2003) Google Scholar
35. 35.
Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic, New York (1971) Google Scholar