Computational Optimization and Applications

, Volume 43, Issue 2, pp 235–259 | Cite as

Mean and variance optimization of non–linear systems and worst–case analysis

  • P. Parpas
  • B. Rustem
  • V. Wieland
  • S. Žaković


In this paper, we consider expected value, variance and worst–case optimization of nonlinear models. We present algorithms for computing optimal expected value, and variance policies, based on iterative Taylor expansions. We establish convergence and consider the relative merits of policies based on expected value optimization and worst–case robustness. The latter is a minimax strategy and ensures optimal cover in view of the worst–case scenario(s) while the former is optimal expected performance in a stochastic setting.

Both approaches are used with a small macroeconomic model to illustrate relative performance, robustness and trade-offs between the alternative policies.


Expected value Worst–case analysis Policy design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Başar, T., Bernhard, P.: H -Optimal Control and Related Minimax Design Problems, 2nd edn. Systems & Control: Foundations & Applications. Birkhäuser Boston, Boston (1995). A dynamic game approach Google Scholar
  2. 2.
    Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Stud. 27, 54–102 (1986). Stochastic programming 84. I MATHMathSciNetGoogle Scholar
  3. 3.
    Chow, G., Corsi, P.: Evaluating the Reliability of Macroeconomic Models. Wiley, New York (1982) Google Scholar
  4. 4.
    Dudley, R.M.: Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  5. 5.
    Ermoliev, Y., Gaivoronski, A., Nedeva, C.: Stochastic optimization problems with incomplete information on distribution functions. SIAM J. Control Optim. 23(5), 697–716 (1985) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fair, R.C.: Specification Estimation and Analysis of Macroeconometric Models. Harvard University Press, Cambridge (1984) Google Scholar
  7. 7.
    Hall, S.G., Henry, S.G.B.: Macroeconomic Modelling. North-Holland, Amsterdam (1988) Google Scholar
  8. 8.
    Hall, S.G., Stephenson, S.J.: Optimal control of stochastic non-linear models. In: Christodoulakis, N. (ed.) Dynamic Modelling & Control of National Economies. Pergamon, Elmsford (1990) Google Scholar
  9. 9.
    Hansen, L., Sargent, T.J., Tallarini, T.D.: Robust permanent income and pricing. Rev. Econ. Stud. 66, 873–907 (1999) MATHCrossRefGoogle Scholar
  10. 10.
    Hansen, L.P., Sargent, T.J.: Robust estimation and control under commitment. J. Econ. Theor. 124(2), 258–301 (2005) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jacobson, D.H.: New interpretations and justifications for worst case min–max design of linear control systems. In: Guardabassi, G., Locatelli, A., Rinaldi, S. (eds.) Sensitivity, Adaptivity and Optimality: Proceedings of the Third IFAC Symposium, June 1973 Google Scholar
  12. 12.
    Kall, P.: Approximation to optimization problems: an elementary review. Math. Oper. Res. 11(1), 9–18 (1986) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kolbin, V.V.: Decision Making and Programming. World Scientific, River Edge (2003). Translated from the Russian by V.M. Donets MATHGoogle Scholar
  14. 14.
    Orphanides, A., Wieland, V.: Inflation zone targeting. Eur. Econ. Rev. 44(7), 1351–1387 (2000) CrossRefGoogle Scholar
  15. 15.
    Rustem, B.: Stochastic and robust control of nonlinear economic systems. Eur. J. Oper. Res. 73, 304–318 (1994) MATHCrossRefGoogle Scholar
  16. 16.
    Rustem, B.: Algorithms for Nonlinear Programming and Multiple-Objective Decisions, Wiley-Interscience Series in Systems and Optimization. Wiley, Chichester (1998) MATHGoogle Scholar
  17. 17.
    Rustem, B., Howe, M.: Algorithms for Worst–Case Design and Applications to Risk Management. Princeton University Press, Princeton (2002) MATHGoogle Scholar
  18. 18.
    Rustem, B., Becker, R.G., Marty, W.: Robust min-max portfolio strategies for rival forecast and risk scenarios. J. Econ. Dyn. Cont. 24(11–12), 1591–1621 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rustem, B., Zakovic, S., Wieland, V.: A continuous minimax problem and its application to inflation targeting. In: Zaccour, G. (ed.) Decision and Control in Management Science. Kluwer Academic, Dordrecht (2002) Google Scholar
  20. 20.
    Rustem, B., Zakovic, S., Parpas, P.: Convergence of an interior point algorithm for continuous minimax. J. Optim. Theory Appl. (2008, to appear) Google Scholar
  21. 21.
    Tetlow, R.J., Muehlen, P.: Robust monetary policy with misspecified models: does model uncertainty always call for attenuated policy? J. Econ. Dyn. Control 25, 911–949 (2001) MATHCrossRefGoogle Scholar
  22. 22.
    Zakovic, S., Pantelides, C., Rustem, B.: An interior point algorithm for computing saddle points of constrained continuous minimax. Ann. Oper. Res. 99, 59–77 (2001) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P. Parpas
    • 1
  • B. Rustem
    • 1
  • V. Wieland
    • 2
  • S. Žaković
    • 1
  1. 1.Department of ComputingImperial CollegeLondonUK
  2. 2.Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations