Skip to main content
Log in

Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Obtaining a complete description of the efficient set of multiobjective optimization problems can be of invaluable help to the decision-maker when the objectives conflict and a solution has to be chosen. In this paper we present an interval branch-and-bound algorithm which aims at obtaining a tight outer approximation of the whole efficient set of nonlinear biobjective problems. The method enhances the performance of a previous rudimentary algorithm thanks to the use of new accelerating devices, namely, three new discarding tests. Some computational studies on a set of competitive location problems demonstrate the efficiency of the discarding tests, as well as the superiority of the new algorithm, both in time and in quality of the outer approximations of the efficient set, as compared to another method, an interval constraint-like algorithm, with the same aim. Furthermore, we also give some theoretical results of the method, which show its good properties, both in the limit (when the tolerances are set equal to zero and the algorithm does not stop) and when the algorithm stops after a finite number of steps (when we use positive tolerances). A key point in the approach is that, thanks to the use of interval analysis tools, it can be applied to nearly any biobjective problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrell, P.J., Lence, B.J., Stam, A.: An interactive multicriteria decision model for multipurpose reservoir management: the shellmouth reservoir. J. Multi-Criteria Decis. Anal. 7, 61–86 (1998)

    Article  MATH  Google Scholar 

  2. Carrizosa, E., Conde, E., Romero-Moralesm, D.: Location of a semiobnoxious facility: a biobjective approach. In: Advances in Multiple Objective and Goal Programming 1996, pp. 338–346. Springer, Berlin (1997)

    Google Scholar 

  3. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. Elsevier, New York (1983)

    MATH  Google Scholar 

  4. Cohon, J.L.: Multiobjective Programming and Planning. Academic, New York (1978)

    MATH  Google Scholar 

  5. Drezner, Z. (ed.): Facility Location: A Survey of Applications and Methods. Springer, Berlin (1995)

    Google Scholar 

  6. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, Berlin (2002)

    MATH  Google Scholar 

  7. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  8. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer Academic, Boston (2002)

    MATH  Google Scholar 

  9. Ehrgott, M., Ryan, D.M.: Constructing robust crew schedules with bicriteria optimization. J. Multi-Criteria Decis. Anal. 11, 139–150 (2002)

    Article  MATH  Google Scholar 

  10. Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 667–722. Kluwer Academic, Berlin (2005)

    Google Scholar 

  11. Ehrgott, M., Klamroth, K., Schwehm, S.: An MCDM approach to portfolio optimization. Eur. J. Oper. Res. 155, 752–770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography. Transp. Sci. 27, 44–54 (1993)

    Article  MATH  Google Scholar 

  13. Fernández, J., Tóth, B.: Obtaining an outer approximation of the efficient set of nonlinear biobjective problems. J. Glob. Optim. 38, 315–331 (2007)

    Article  MATH  Google Scholar 

  14. Fernández, J., Fernández, P., Pelegrín, B.: Estimating actual distances by norm functions: a comparison between the l k,p,θ -norm and the \(l_{b_{1},b_{2},\theta}\) -norm and a study about the selection of the data set. Comput. Oper. Res. 29, 609–623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fernández, J., Tóth, B., Plastria, F., Pelegrín, B.: Reconciling franchisor and franchisee: a planar biobjective competitive location and design model. In: Seeger, A. (ed.) Recent Advances in Optimization. Lectures Notes in Economics and Mathematical Systems, vol. 563, pp. 375–398. Springer, Berlin (2006)

    Chapter  Google Scholar 

  16. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw. Spat. Econ. 7, 19–44 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179, 1274–1287 (2007)

    Article  MATH  Google Scholar 

  18. Figueira, J., Greco, S., Ehrgotts, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Kluwer Academic, New York (2005)

    MATH  Google Scholar 

  19. Francis, R.L., McGinnis, L.F., White, J.A.: Facility Layout Location: An Analytical Approach, 2nd edn. Prentice Hall, New York (1992)

    Google Scholar 

  20. Gal, T., Hanne, T.: On the development and future aspects of vector optimization and MCDM. A tutorial. In: Climaco, J. (ed.) Multicriteria Analysis, Proc. of the XIth Int. Conf. on MCDM, pp. 130–145. Springer, Berlin (1997)

    Google Scholar 

  21. Ghosh, A., Craig, C.S.: FRANSYS: a franchise distribution system location model. J. Retail. 67, 466–495 (1991)

    Google Scholar 

  22. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs. Springer, Berlin (1995)

    MATH  Google Scholar 

  23. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd revised and expanded edn. Dekker, New York (2004)

    MATH  Google Scholar 

  24. Hansen, P., Jaumard, B.: Lipschitz optimization. In: Handbook of Global Optimization, pp. 407–494. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  25. Huff, D.L.: Defining and estimating a trading area. J. Mark. 28, 34–38 (1964)

    Article  Google Scholar 

  26. Ichida, K., Fujii, Y.: Multicriterion optimization using interval analysis. Computing 44, 47–57 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  28. Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization problems. Math. Program. 83, 89–100 (1998)

    MathSciNet  Google Scholar 

  29. Kearfott, R.B.: Improved and simplified validation of feasible points—inequality and equality constrained problems. Math. Program (2006, submitted). Available at http://interval.louisiana.edu/preprints.html

  30. Kilkenny, M., Thisse, J.F.: Economics of location: a selective survey. Comput. Oper. Res. 26, 1369–1394 (1999)

    Article  MATH  Google Scholar 

  31. Knüppel, O.: PROFIL/BIAS—a fast interval library. Computing 53, 277–287 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Küfer, K.H., Scherrer, A., Monz, M., Alonso, F., Trinkaus, H., Bortfeld, T., Thieke, C.: Intensity-modulated radiotherapy—a large scale multi-criteria programming problem. OR Spectrum 25, 223–249 (2003)

    Article  MATH  Google Scholar 

  33. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Methods. North-Holland, New York (1988)

    MATH  Google Scholar 

  34. Markót, M.C., Fernández, J., Casado, L.G., Csendes, T.: New interval methods for constrained global optimization. Math. Program. Ser. A 106, 287–318 (2006)

    Article  MATH  Google Scholar 

  35. Martínez, J.A., Casado, L.G., García, I., Tóth, B.: AMIGO: Advanced multidimensional interval analysis global optimization algorithm. In: Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol. 74, pp. 313–326. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  36. Miettinen, K.S.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1998)

    Google Scholar 

  37. Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: MCDM location problems. In: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2005)

    Google Scholar 

  38. Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129, 461–470 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood, Chichester (1988)

    MATH  Google Scholar 

  40. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126, 473–501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sayin, S.: Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Program. 87, 543–560 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schniederjans, M.J., Hollcroft, E.: A multi-criteria modeling approach to jury selection. Socio-Econ. Plan. Sci. 39, 81–102 (2005)

    Article  Google Scholar 

  43. Silverman, J., Steuer, R.E., Whisman, A.W.: A multi-period, multiple criteria optimization system for manpower planning. Eur. J. Oper. Res. 34, 160–170 (1988)

    Article  MathSciNet  Google Scholar 

  44. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, New York (1986)

    MATH  Google Scholar 

  45. Tóth, B.: Interval methods for competitive location problems. PhD thesis, Dpt. Computer Architecture and Electronics, University of Almería, Spain, June 2007. Available at http://www.um.es/geloca/gio/TesisBogi.pdf

  46. Tóth, B., Csendes, T.: Empirical investigation of the convergence speed of inclusion functions. Reliab. Comput. 11, 253–273 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Tóth, B., Fernández, J., Csendes, T.: Empirical convergence speed of inclusion functions for facility location problems. J. Comput. Appl. Math. 199, 384–389 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. White, D.J.: A bibliography on the applications of mathematical programming multiple-objective methods. J. Oper. Res. Soc. 41, 669–691 (1990)

    Article  MATH  Google Scholar 

  49. Xu, P.: A hybrid global optimization method: the multidimensional case. J. Comput. Appl. Math. 155, 423–446 (2003)

    MATH  MathSciNet  Google Scholar 

  50. Yu, P.L.: Multiple-criteria Decision Making Concepts, Techniques and Extensions. Plenum, New York (1985)

    MATH  Google Scholar 

  51. Zeleny, M.: Multiple Criteria Decision Making. McGraw–Hill, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, J., Tóth, B. Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods. Comput Optim Appl 42, 393–419 (2009). https://doi.org/10.1007/s10589-007-9135-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9135-8

Keywords

Navigation