Advertisement

Computational Optimization and Applications

, Volume 39, Issue 1, pp 97–119 | Cite as

Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers

  • Y. S. Ong
  • K. Y. Lum
  • P. B. Nair
Article

Abstract

In this paper, we present an evolutionary algorithm hybridized with a gradient-based optimization technique in the spirit of Lamarckian learning for efficient design optimization. In order to expedite gradient search, we employ local surrogate models that approximate the outputs of a computationally expensive Euler solver. Our focus is on the case when an adjoint Euler solver is available for efficiently computing the sensitivities of the outputs with respect to the design variables. We propose the idea of using Hermite interpolation to construct gradient-enhanced radial basis function networks that incorporate sensitivity data provided by the adjoint Euler solver. Further, we conduct local search using a trust-region framework that interleaves gradient-enhanced surrogate models with the computationally expensive adjoint Euler solver. This ensures that the present hybrid evolutionary algorithm inherits the convergence properties of the classical trust-region approach. We present numerical results for airfoil aerodynamic design optimization problems to show that the proposed algorithm converges to good designs on a limited computational budget.

Keywords

Hybrid evolutionary algorithm Hermite radial basis function Gradient-based approximation Computationally expensive adjoint solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, N., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing the use of approximation models in optimization. Struct. Optim. 15(1), 16–23 (1998) CrossRefGoogle Scholar
  2. 2.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995) Google Scholar
  3. 3.
    Booker, A.J., Dennis, Jr J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1–13 (1998) CrossRefGoogle Scholar
  4. 4.
    Burgreen, G.W., Baysal, O.: Three-dimensional aerodynamic shape optimization of wings using discrete sensitivity analysis. AIAA J. 34(9), 1761–1770 (1996) MATHCrossRefGoogle Scholar
  5. 5.
    El-Beltagy, M.A., Nair, P.B., Keane, A.J.: Metamodelling techniques for evolutionary optimization of computationally expensive problems: promises and limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 196–203, Morgan Kaufman, Los Altos (1999) Google Scholar
  6. 6.
    Fasshauer, G.: Hermite interpolation with radial basis functions on spheres. Adv. Comput. Math. 10, 81–96 (1999) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual organizations, Int. J. Supercomput. Appl. 15(3) (2001) Google Scholar
  8. 8.
    Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991) MATHCrossRefGoogle Scholar
  9. 9.
    Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog. Aerosp. Sci. 38, 43–76 (2001) CrossRefGoogle Scholar
  10. 10.
    Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393–415 (2000) MATHCrossRefGoogle Scholar
  11. 11.
    Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19, 163–208 (1990) CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Hicks, R.M., Henne, P.A.: Wing design by numerical optimization. J. Aircr. 15(7), 407–412 (1978) Google Scholar
  13. 13.
    Ho, Q.T., Ong, Y.S., Cai, W.T.: Gridifying aerodynamic design problem using GridRPC. In: Second Grid and Cooperative Computing: Second International Workshop 2003, Part I, Shanghai, China. Lecture Notes in Computer Science, vol. 3032, pp. 83–90. Springer, Heidelberg (2004) Google Scholar
  14. 14.
    Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988) MATHCrossRefGoogle Scholar
  15. 15.
    Jameson, A., Reuther, J.: Control theory based airfoil design using the Euler equations. AIAA 94-4272-CP (1994) Google Scholar
  16. 16.
    Jameson, A., Vassberg, J.C.: Computational fluid dynamics for aerodynamic design: its current and future impact. AIAA 2001-0538 (January 2001) Google Scholar
  17. 17.
    Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques under multiple modeling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001) CrossRefGoogle Scholar
  18. 18.
    Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. J. 9(1), 3–12 (2005) CrossRefGoogle Scholar
  19. 19.
    Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002) CrossRefGoogle Scholar
  20. 20.
    Keane, A.J., Nair, P.B.: Computational Approaches for Aerospace Design. Wiley, New York (2005). Chapter 4 Google Scholar
  21. 21.
    Lawrence, C.T., Tits, A.L.: A computionally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11(4), 1092–1118 (2001) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated N-dimensional landscapes. Int. J. Knowl.-Based Intell. Eng. Syst. 4(3), 172–183 (2001) Google Scholar
  23. 23.
    Lions, J.L.: Optimal Control Of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). Translated by S.K. Mitter MATHGoogle Scholar
  24. 24.
    Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (1995) MATHGoogle Scholar
  25. 25.
    Nanyang Campus Grid: http://ntu-cg.ntu.edu.sg/
  26. 26.
    Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comput. 63(208), 661–687 (1994) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ng, H.K., Lim, D., Ong, Y.S., Lee, B.S., Freund, L., Parvez, S., Sendhoff, B.: A multi-cluster grid enabled evolution framework for aerodynamic airfoil design optimization. In: Wang, L.P., Chen, K., Ong, Y.S. (eds.) International Conference on Natural Computing. Lecture Notes in Computer Science, vol. 3611, pp. 1112–1121. Springer, New York (2005) Google Scholar
  28. 28.
    Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithm. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004) CrossRefGoogle Scholar
  29. 29.
    Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. Am. Inst. Aeronaut. Astronaut. J. 41(4), 687–696 (2003) Google Scholar
  30. 30.
    Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 307–331. Studies in Fuzziness and Soft Computing Series. Springer, New York (2004) Google Scholar
  31. 31.
    Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust aerodynamic design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006) CrossRefGoogle Scholar
  32. 32.
    Reuther, J., Jameson, A., Alonso, J.J., Rimlinger, M.J., Saunders, D.: Constrained multipoint aerodynamic shape optimization using adjoint formulation and parallel computers. AIAA Paper 97-0103 (January 1997) Google Scholar
  33. 33.
    Rodriguez, J.F., Renaud, J.E., Watson, L.T.: Convergence of trust region augmented Lagrangian methods using variable fidelity approximation data. Struct. Optim. 5(3–4), 141–156 (1998) CrossRefGoogle Scholar
  34. 34.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Serafini, D.B.: A framework for managing models in nonlinear optimization of computally expensive functions. Ph.D. Thesis, Rice University (1998) Google Scholar
  36. 36.
    Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.J.: Approximation methods in multidisciplinary analysis and optimization: a panel discussion, In: Proceedings of the Third ISSMO/AIAA Internet Conference on Approximations in Optimization, pp. 14–25 (2002) Google Scholar
  37. 37.
    Song, W.B., Keane, A.J.: A study of shape parameterisation methods for airfoil optimisation. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 2031–2038 (2004). AIAA 2004-4482 Google Scholar
  38. 38.
    Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretsky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (1996) Google Scholar
  39. 39.
    Zhongmin, W.: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory Appl. 8, 1–10 (1992) Google Scholar
  40. 40.
    Zhou, Z.Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C 36(6), 814–823 (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Computer Engineering, Block N4Nanyang Technological UniversitySingaporeSingapore
  2. 2.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  3. 3.Computational Engineering and Design Group, School of Engineering SciencesUniversity of SouthamptonHighfield, SouthamptonEngland

Personalised recommendations