Adaptive and restarting techniques-based algorithms for circular packing problems



In this paper, we study the circular packing problem (CPP) which consists of packing a set of non-identical circles of known radii into the smallest circle with no overlap of any pair of circles. To solve CPP, we propose a three-phase approximate algorithm. During its first phase, the algorithm successively packs the ordered set of circles. It searches for each circle’s “best” position given the positions of the already packed circles where the best position minimizes the radius of the current containing circle. During its second phase, the algorithm tries to reduce the radius of the containing circle by applying (i) an intensified search, based on a reduction search interval, and (ii) a diversified search, based on the application of a number of layout techniques. Finally, during its third phase, the algorithm introduces a restarting procedure that explores the neighborhood of the current solution in search for a better ordering of the circles. The performance of the proposed algorithm is evaluated on several problem instances taken from the literature.


Circular packing Combinatorial optimization Dynamic search Reactive search Restarting procedure 


  1. 1.
    Akeb, H., Li, Y.: Basic heuristics for packing a great number of equal circles. Working paper No 7, LaRIA, Université de Picardie Jules Verne, Amiens (2005) Google Scholar
  2. 2.
    Birgin, E.G., Martinez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Eur. J. Oper. Res. 160, 19–33 (2005) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Correia, M.H., Oliveira, J.F., Ferreira, J.S.: A new upper bound for the cylinder packing problem. Int. Trans. Oper. Res. 8, 571–583 (2001) CrossRefGoogle Scholar
  4. 4.
    Dowsland, K.A.: Palletisation of cylinders in cases. OR Spektr. 13, 171–172 (1991) CrossRefGoogle Scholar
  5. 5.
    Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dyckhoff, H., Scheithauer, G., Terno, J.: Cutting and packing (C&P). In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliography in Combinatorial Optimization, pp. 393–413. Wiley, Chichester (1997) Google Scholar
  7. 7.
    Fraser, H.J., George, J.A.: Integrated container loading software for pulp and paper industry. Eur. J. Oper. Res. 77, 466–474 (1994) MATHCrossRefGoogle Scholar
  8. 8.
    George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a rectangular container. Eur. J. Oper. Res. 84, 693–712 (1995) MATHCrossRefGoogle Scholar
  9. 9.
    Graham, R.L., Lubachevsky, B.D.: Repeated patterns of dense packings of equal disks in a square. Electron. J. Comb. 3, 16 (1996) Google Scholar
  10. 10.
    Graham, R.L., Lubachevsky, B.D., Nurmela, K.J., Östergȧrd, P.R.J.: Dense packings of congruent circles in a circle. Discrete Math. 181, 139–154 (1998) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hifi, M., M’Hallah, R.: Approximate algorithms for constrained circular cutting problems. Comput. Oper. Res. 31, 675–694 (2004) MATHCrossRefGoogle Scholar
  12. 12.
    Hifi, M., M’Hallah, R.: A dynamic adaptive local search based algorithm for the circular packing problem. Eur. J. Oper. Res., doi:  10.1016/j.ejor.2005.11.069
  13. 13.
    Hifi, M., Paschos, V.T., Zissimopoulos, V.: A simulated annealing approach for the circular cutting problem. Eur. J. Oper. Res. 159, 430–448 (2004) MATHCrossRefGoogle Scholar
  14. 14.
    Huang, W.Q., Lee, Y., Xu, R.C.: A quasi-physical method of solving packing problems. In: Proc. of the 4th Metaheuristics International Conference, Porto, Portugal, 16–20 July 2001 Google Scholar
  15. 15.
    Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for unequal circles into a rectangular container. J. Oper. Res. Soc. 56, 539–548 (2005) MATHCrossRefGoogle Scholar
  16. 16.
    Huang, W.Q., Li, Y., Gerard, S., Li, C.M., Xu, R.C.: A learning from human heuristic for solving unequal circle packing problem. In: Hao, J.K., Liu, B.D. (eds.) Proc. of the 1st International Workshop on Heuristics, Beijing, China, pp. 39–45 (2002) Google Scholar
  17. 17.
    Huang, W.Q., Li, Y., Li, C.M., Xu, R.C.: New heuristics for packing unequal circles into a circular container. Comput. Oper. Res. 33, 2125–2142 (2006) MATHCrossRefGoogle Scholar
  18. 18.
    Lubachevsky, D., Graham, R.L.: Curved hexagonal packing of equal circles in a circle. Discrete Comput. Geom. 18, 179–194 (1997) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Luger, G.F., Stubblefield, W.A.: Artificial Intelligence—Structures and Strategies for Complex Problem Solving. Addison-Wesley, Reading (1998) MATHGoogle Scholar
  20. 20.
    Mladenovic, N., Plastria, F., Urosevic, D.: Reformulation descent applied to circle packing problems. Comput. Oper. Res. 32, 2419–2434 (2005) MATHCrossRefGoogle Scholar
  21. 21.
    Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill, New York (1992) Google Scholar
  22. 22.
    Stoyan, Y.G.: Mathematical methods for geometric design. In: Advances in CAD/CAM: Proceedings of PROLAMAT’82, Leningrad, USSR, 16–18 May 1982, pp. 67–86. North-Holland, Amsterdam (2003) Google Scholar
  23. 23.
    Stoyan, Y.G., Terno, J., Scheithauer, G., Romanova, T.: Φ functions for primary 2D-objects, Studia Informatica Universalis. Int. J. Informatics 2, 1–32 (2002) (Special Issue on Cutting, Packing and Knapsacking) Google Scholar
  24. 24.
    Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5(1), 45–57 (1998) MATHGoogle Scholar
  25. 25.
    Stoyan, Y.G., Yaskov, G.N.: A mathematical model and a solution method for the problem of placing various sized circles into a strip. Eur. J. Oper. Res. 156, 590–600 (2004) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estimation of the size of wire bundle. Jpn. J. Ind. Appl. Math. 21, 259–278 (2004) MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: a categorized applications-oriented research bibliography. J. Oper. Res. Soc. 43, 691–706 (1992) MATHCrossRefGoogle Scholar
  28. 28.
    Wang, H., Huang, W., Zhanga, Q., Xua, D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141(2), 440–453 (2002) MATHCrossRefGoogle Scholar
  29. 29.
    Zhang, D., Deng, A.: An effective hybrid algorithm for the problem of packing circles into a larger containing circle. Comput. Oper. Res. 32(8), 1941–1951 (2005) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.LaRIAUniversité de Picardie Jules VerneAmiensFrance
  2. 2.CERMSEM, MSEUniversité Paris 1 Pantéon-SorbonneParisFrance
  3. 3.Department of Statistics and Operations ResearchKuwait UniversitySafatKuwait

Personalised recommendations