Czechoslovak Mathematical Journal

, Volume 66, Issue 3, pp 859–879 | Cite as

Convergence of Rump’s method for computing the Moore-Penrose inverse

  • Yunkun Chen
  • Xinghua Shi
  • Yimin Wei


We extend Rump’s verified method (S.Oishi, K.Tanabe, T.Ogita, S.M.Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.


Moore-Penrose inverse condition number ill-conditioned matrix 

MSC 2010

65F05 15A24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ben-Israel, T. N. E. Greville: Generalized Inverses. Theory and Applications. Springer, New York, 2003.MATHGoogle Scholar
  2. [2]
    Å. Björck: Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1996.CrossRefMATHGoogle Scholar
  3. [3]
    S. L. Campbell, C. D. Meyer: Generalized Inverses of Linear Transformations. Dover Publications, New York, 1991.MATHGoogle Scholar
  4. [4]
    N. Castro-González, J. Ceballos, F. M. Dopico, J. M. Molera: Accurate solution of structured least squares problems via rank-revealing decompositions. SIAM J. Matrix Anal. Appl. 34 (2013), 1112–1128.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L. Chen, E. V. Krishnamurthy, I. Madeod: Generalised matrix inversion and rank computation by successive matrix powering. Parallel Comput. 20 (1994), 297–311.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    P. Courrieu: Fast computation of Moore-Penrose inverse matrices. Neural Information Processing 8 (2005), 25–29.Google Scholar
  7. [7]
    F. Cucker, H. Diao, Y. Wei: On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. Math. Comput. 76 (2007), 947–963.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Cucker, H. Diao, Y. Wei: Smoothed analysis of some condition numbers. Numer. Linear Algebra Appl. 13 (2006), 71–84.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, Z. Drmač: Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299 (1999), 21–80.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. W. Demmel, Y. Hida, X. S. Li, E. J. Riedy: Extra-precise iterative refinement for overdetermined least squares problems. ACM Trans. Math. Software 35 (2009), Art. 28, 32 pages.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Demmel, N. J. Higham: Improved error bounds for underdetermined system solvers. SIAM J. Matrix Anal. Appl. 14 (1993), 1–14.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H. Diao, Y. Wei: On Frobenius normwise condition numbers for Moore-Penrose inverse and linear least-squares problems. Numer. Linear Algebra Appl. 14 (2007), 603–610.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    H. Diao, Y. Wei, S. Qiao: Structured condition numbers of structured Tikhonov regularization problem and their estimations. J. Comput. Appl. Math. 308 (2016), 276–300.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F. M. Dopico, J. M. Molera: Accurate solution of structured linear systems via rankrevealing decompositions. IMA J. Numer. Anal. 32 (2012), 1096–1116.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Fiedler: Moore-Penrose biorthogonal systems in Euclidean spaces. Linear Algebra Appl. 362 (2003), 137–143.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Fiedler, T. L. Markham: A characterization of the Moore-Penrose inverse. Linear Algebra Appl. 179 (1993), 129–133.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    G. H. Golub, C. F. Van Loan: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, 2013.Google Scholar
  18. [18]
    M. Gulliksson, P. Å. Wedin, Y. Wei: Perturbation identities for regularized Tikhonov inverses and weighted pseudoinverses. BIT 40 (2000), 513–523.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. Jones, N. P. Karampetakis, A. C. Pugh: The computation and application of the generalized inverse via Maple. J. Symb. Comput. 25 (1998), 99–124.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V. N. Katsikis, D. Pappas: Fast computing of the Moore-Penrose inverse matrix. Electron. J. Linear Algebra (electronic only) 17 (2008), 637–650.MathSciNetMATHGoogle Scholar
  21. [21]
    Z.-C. Li, H.-T. Huang, Y. Wei, A. H.-D. Cheng: Effective Condition Number for Numerical Partial Differential Equations. Alpha Science International, Oxford, 2014.Google Scholar
  22. [22]
    Z. Li, Q. Xu, Y. Wei: A note on stable perturbations of Moore-Penrose inverses. Numer. Linear Algebra Appl. 20 (2013), 18–26.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot product. SIAM J. Sci. Comput. 26 (2005), 1955–1988.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    T. Ohta, T. Ogita, S. M. Rump, S. Oishi: Numerical verification method for arbitrarily ill-conditioned linear systems. Transactions of the Japan Society for Industrial and Applied Mathematics 15 (2005), 269–287.Google Scholar
  25. [25]
    S. Oishi, S. M. Rump: Fast verification of solutions of matrix equations. Numer. Math. 90 (2002), 755–773.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S. Oishi, K. Tanabe, T. Ogita, S. M. Rump: Convergence of Rump’s method for inverting arbitrarily ill-conditioned matrices. J. Comput. Appl. Math. 205 (2007), 533–544.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    C. R. Rao, S. K. Mitra: Generalized Inverses of Matrices and Its Applications. Wiley Series in Probability and Mathematical Statistics, Wiley & Sons, New York, 1971.Google Scholar
  28. [28]
    S. M. Rump: Verified bounds for least squares problems and underdetermined linear systems. SIAM J. Matrix Anal. Appl. 33 (2012), 130–148.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. M. Rump: Inversion of extremely ill-conditioned matrices in floating-point. Japan J. Ind. Appl. Math. 26 (2009), 249–277.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. M. Rump: INTLAB—Interval Laboratory, the Matlab toolbox for verified computations, Version 5.3. Institute for Reliable Computing, Hamburg, 2006.Google Scholar
  31. [31]
    S. M. Rump: Ill-conditioned matrices are componentwise near to singularity. SIAM Rev. 41 (1999), 102–112.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. M. Rump: Ill-conditionedness need not be componentwise near to ill-posedness for least squares problems. BIT 39 (1999), 143–151.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    S. M. Rump: A class of arbitrarily ill-conditioned floating-point matrices. SIAM J. Matrix Anal. Appl. 12 (1991), 645–653.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    S. M. Rump: Approximate Inverses of Almost Singular Matrices Still Contain Useful Information, Technical Report 90.1. Faculty for Information and Communications Sciences, TU Hamburg, Harburg, 1990.Google Scholar
  35. [35]
    A. Smoktunowicz, J. Barlow, J. Langou: A note on the error analysis of classical Gram-Schmidt. Numer. Math. 105 (2006), 299–313.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Smoktunowicz, I. Wróbel: Numerical aspects of computing the Moore-Penrose inverse of full column rank matrices. BIT 52 (2012), 503–524.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    G. W. Stewart: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19 (1977), 634–662.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    G. Wang, Y. Wei, S. Qiao: Generalized Inverses: Theory and Computations. Science Press, Beijing, 2004.Google Scholar
  39. [39]
    P. Å. Wedin: Perturbation theory for pseudo-inverses. BIT, Nord. Tidskr. Inf.-behandl. 13 (1973), 217–232.MathSciNetMATHGoogle Scholar
  40. [40]
    Y. Wei: Generalized inverses of matrices, Chapter 27. Handbook of Linear Algebra (L. Hogben, ed.). Chapman & Hall/CRC Press, Boca Raton, 2014, pp. 27-1–27-15.Google Scholar
  41. [41]
    Y. Wei, J. Ding: Representations for Moore-Penrose inverses in Hilbert spaces. Appl. Math. Lett. 14 (2001), 599–604.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    Y. Wei, H. Wu: Expression for the perturbation of the weighted Moore-Penrose inverse. Comput. Math. Appl. 39 (2000), 13–18.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    Y. Wei, P. Xie, L. Zhang: Tikhonov regularization and randomized GSVD. SIAM J. Matrix Anal. Appl. 37 (2016), 649–675.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    W. Xu, Y. Wei, S. Qiao: Condition numbers for structured least squares problems. BIT 46 (2006), 203–225.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    L. Zhou, L. Lin, Y. Wei, S. Qiao: Perturbation analysis and condition numbers of scaled total least squares problems. Numer. Algorithms 51 (2009), 381–399.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    G. Zielke: Report on test matrices for generalized inverses. Computing 36 (1986), 105–162.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesXiamen UniversityXiamen, FujianP.R. China
  2. 2.School of Mathematics and Computer ScienceGuizhou Normal UniversityGuiyang, GuizhouP. R. China
  3. 3.School of Mathematical SciencesFudan UniversityShanghaiP.R. China
  4. 4.Shanghai Key Laboratory of Contemporary Applied MathematicsShanghaiP. R. China

Personalised recommendations