Czechoslovak Mathematical Journal

, Volume 66, Issue 2, pp 527–546 | Cite as

On some new sharp embedding theorems in minimal and pseudoconvex domains

  • Romi F. Shamoyan
  • Olivera R. Mihić


We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in C n . Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the r-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.


embedding theorem minimal domain pseudoconvex domain Bergman-type space 

MSC 2010

42B15 42B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abate, J. Raissy, A. Saracco: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449–3491.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Abate, A. Saracco: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., Ser. (2) 83 (2011), 587–605.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Arsenović, R. F. Shamoyan: On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains. Bull. Korean Math. Soc. 52 (2015), 85–103.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    F. Beatrous, Jr.: L p-estimates for extensions of holomorphic functions. Mich. Math. J. 32 (1985), 361–380.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L. Carleson: Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2) 76 (1962), 547–559.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. A. Cima, P. R. Mercer: Composition operators between Bergman spaces on convex domains in Cn. J. Oper. Theory 33 (1995), 363–369.MathSciNetMATHGoogle Scholar
  7. [7]
    J. A. Cima, W. R. Wogen: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157–163.MathSciNetMATHGoogle Scholar
  8. [8]
    W. S. Cohn: Tangential characterizations of BMOA on strictly pseudoconvex domains. Math. Scand. 73 (1993), 259–273.MathSciNetMATHGoogle Scholar
  9. [9]
    A. E. Djrbashian, F. A. Shamoyan: Topics in the Theory of A α p Spaces. Teubner-Texte zur Mathematik 105, Teubner, Leipzig, 1988.Google Scholar
  10. [10]
    M. Engliš, T. T. Hänninen, J. Taskinen: Minimal L -type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous. Houston J. Math. 32 (2006), 253–275.MathSciNetMATHGoogle Scholar
  11. [11]
    W. W. Hastings: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237–241.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    T. Jimbo, A. Sakai: Interpolation manifolds for products of strictly pseudoconvex domains. Complex Variables, Theory Appl. 8 (1987), 333–341.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S. Kobayashi: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften 318, Springer, Berlin, 1998.Google Scholar
  14. [14]
    S. G. Krantz: Function Theory of Several Complex Variables. Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley & Sons, New York, 1982.Google Scholar
  15. [15]
    H. Li: BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains. J. Funct. Anal. 106 (1992), 375–408.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.-Y. Li, W. Luo: Analysis on Besov spaces II: Embedding and duality theorems. J. Math. Anal. Appl. 333 (2007), 1189–1202.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Li, R. Shamoyan: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144–154.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Li, R. Shamoyan: On some properties of analytic spaces connected with Bergman metric ball. Bull. Iran. Math. Soc. 34 (2008), 121–139.MathSciNetMATHGoogle Scholar
  19. [19]
    D. Luecking: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656–660.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J. D. McNeal, E. M. Stein: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73 (1994), 177–199.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    V. L. Oleinik: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228–243.CrossRefMATHGoogle Scholar
  22. [22]
    V. L. Oleinik, B. S. Pavlov: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135–142.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    J. M. Ortega, J. Fàbrega: Mixed-norm spaces and interpolation. Stud. Math. 109 (1994), 233–254.MathSciNetMATHGoogle Scholar
  24. [24]
    R. M. Range: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics 108, Springer, New York, 1986.Google Scholar
  25. [25]
    R. F. Shamoyan, S. M. Kurilenko, M. Sergey: On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of n-dimensional complex space. Journal of Siberian Federal University 7 (2014), 383–388.MATHGoogle Scholar
  26. [26]
    R. F. Shamoyan, O. R. Mihić: On distance function in some new analytic Bergman type spaces in Cn. J. Funct. Spaces (2014), Article ID 275416, 10 pages.Google Scholar
  27. [27]
    R. F. Shamoyan, O. R. Mihić: On new estimates for distances in analytic function spaces in higher dimension. Sib. `Elektron. Mat. Izv. (electronic only) 6 (2009), 514–517.MathSciNetMATHGoogle Scholar
  28. [28]
    R. F. Shamoyan, O. R. Mihić: On some properties of holomorphic spaces based on Bergman metric ball and Luzin area operator. J. Nonlinear Sci. Appl. 2 (2009), 183–194.MathSciNetMATHGoogle Scholar
  29. [29]
    R. Shamoyan, E. Povprits: Sharp theorems on traces in analytic spaces in tube domains over symmetric cones. Journal of Siberian Federal University 6 (2013), 527–538.Google Scholar
  30. [30]
    R. F. Shamoyan, E. V. Povprits: Multifunctional analytic spaces on products of bounded strictly pseudoconvex domains and embedding theorems. Kragujevac J. Math. 37 (2013), 221–244.MathSciNetMATHGoogle Scholar
  31. [31]
    R. Shamoyan, M. Radnia: On some new embedding theorems for some analytic classes in the unit ball. J. Nonlinear Sci. Appl. 2 (2009), 243–250.MathSciNetMATHGoogle Scholar
  32. [32]
    S. Yamaji: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107–127.MathSciNetMATHGoogle Scholar
  33. [33]
    S. Yamaji: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 65 (2013), 1101–1115.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    K. Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York, 2005.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016

Authors and Affiliations

  1. 1.State UniversityryanskRussia
  2. 2.Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations