Czechoslovak Mathematical Journal

, Volume 65, Issue 3, pp 801–817 | Cite as

Product spaces generated by bilinear maps and duality

  • Enrique A. Sánchez Pérez


In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding pointwise products of Banach function spaces, spaces of integrable functions with respect to vector measures, spaces of operators, multipliers on Banach spaces of analytic functions and spaces of Lipschitz functions.


Banach space product multiplication operator duality Banach function space Hadamard product Lipschitz map integration vector measure 

MSC 2010

46A32 46E30 47A30 46B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ó. Blasco, M. Pavlović: Coefficient multipliers on Banach spaces of analytic functions. Rev. Mat. Iberoam. 27 (2011), 415–447.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. M. Calabuig, O. Delgado, E. A. Sánchez Pérez: Generalized perfect spaces. Indag. Math., New Ser. 19 (2008), 359–378.MATHCrossRefGoogle Scholar
  3. [3]
    A. Defant, K. Floret: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies 176, North-Holland, Amsterdam, 1993.MATHCrossRefGoogle Scholar
  4. [4]
    O. Delgado, E. A. Sánchez Pérez: Summability properties for multiplication operators on Banach function spaces. Integral Equations Oper. Theory 66 (2010), 197–214.MATHCrossRefGoogle Scholar
  5. [5]
    J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathematical Society, Providence, 1977.MATHGoogle Scholar
  6. [6]
    A. Fernández, F. Mayoral, F. Naranjo, C. Sáez, E. A. Sánchez-Pérez: Spaces of p-integrable functions with respect to a vector measure. Positivity 10 (2006), 1–16.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Ferrando, E. A. Sánchez Pérez: Tensor product representation of the (pre)dual of the L p-space of a vector measure. J. Aust. Math. Soc. 87 (2009), 211–225.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Ferrando, J. Rodríguez: The weak topology on L p of a vector measure. Topology Appl. 155 (2008), 1439–1444.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Kolwicz, K. Leśnik, L. Maligranda: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266 (2014), 616–659.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces. II: Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 97, Springer, Berlin, 1979.MATHCrossRefGoogle Scholar
  11. [11]
    M. Mastyło, E. A. Sánchez-Pérez: Köthe dual of Banach lattices generated by vector measures. Monatsh. Math. 173 (2014), 541–557.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Okada, W. J. Ricker, E. A. Sánchez Pérez: Optimal Domain and Integral Extension of Operators: Acting in Function Spaces. Operator Theory: Advances and Applications 180, Birkhäuser, Basel, 2008.Google Scholar
  13. [13]
    E. A. Sánchez Pérez: Factorization theorems for multiplication operators on Banach function spaces. Integral Equations Oper. Theory 80 (2014), 117–135.MATHCrossRefGoogle Scholar
  14. [14]
    E. A. Sánchez Pérez: Vector measure duality and tensor product representations of L p-spaces of vector measures. Proc. Am. Math. Soc. 132 (2004), 3319–3326.MATHCrossRefGoogle Scholar
  15. [15]
    E. A. Sánchez Pérez: Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Ill. J. Math. 45 (2001), 907–923.MATHGoogle Scholar
  16. [16]
    P. Rueda, E. A. Sánchez Pérez: Compactness in spaces of p-integrable functions with respect to a vector measure. Topol. Methods Nonlinear Anal. 45 (2015), 641–654.CrossRefGoogle Scholar
  17. [17]
    A. R. Schep: Products and factors of Banach function spaces. Positivity 14 (2010), 301–319.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Sukochev, A. Tomskova: (E, F)-Schur multipliers and applications. Stud. Math. 216 (2013), 111–129.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2015

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y Aplicada (IUMPA)Universitat Politècnica de ValènciaValènciaSpain

Personalised recommendations