# On solvability of finite groups with some *ss*-supplemented subgroups

Article

First Online:

Received:

- 71 Downloads

## Abstract

A subgroup *H* of a finite group *G* is said to be *ss*-supplemented in *G* if there exists a subgroup *K* of *G* such that *G* = *HK* and *H* ∩ *K* is *s*-permutable in *K*. In this paper, we first give an example to show that the conjecture in A.A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group *G* is solvable if every subgroup of odd prime order of *G* is *ss*-supplemented in *G*, and that *G* is solvable if and only if every Sylow subgroup of odd order of *G* is *ss*-supplemented in *G*. These results improve and extend recent and classical results in the literature.

## Keywords

*ss*-supplemented subgroup solvable group supersolvable group

## MSC 2010

20D10 20D20## Preview

Unable to display preview. Download preview PDF.

## References

- [1]
*Z. Arad, M. B. Ward*: New criteria for the solvability of finite groups. J. Algebra*77*(1982), 234–246.MATHMathSciNetCrossRefGoogle Scholar - [2]
*M. Asaad, M. Ramadan*: Finite groups whose minimal subgroups are c-supplemented. Commun. Algebra*36*(2008), 1034–1040.MATHMathSciNetCrossRefGoogle Scholar - [3]
*A. Ballester-Bolinches, Y. Wang, G. Xiuyun*:*c*-supplemented subgroups of finite groups. Glasg. Math. J.*42*(2000), 383–389.MATHMathSciNetCrossRefGoogle Scholar - [4]
*A. Ballester-Bolinches, G. Xiuyun*: On complemented subgroups of finite groups. Arch. Math.*72*(1999), 161–166.MATHMathSciNetCrossRefGoogle Scholar - [5]
*K. Doerk, T. O. Hawkes*: Finite Soluble Groups. de Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin, 1992.MATHCrossRefGoogle Scholar - [6]
*D. Gorenstein*: Finite Groups. Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1968.Google Scholar - [7]
*X. Guo, J. Lu*: On*ss*-supplemented subgroups of finite groups and their properties. Glasg. Math. J.*54*(2012), 481–491.MathSciNetCrossRefGoogle Scholar - [8]
*R. M. Guralnick*: Subgroups of prime power index in a simple group. J. Algebra*81*(1983), 304–311.MATHMathSciNetCrossRefGoogle Scholar - [9]
*P. Hall*: A characteristic property of soluble groups. J. Lond. Math. Soc.*12*(1937), 198–200.CrossRefGoogle Scholar - [10]
- [11]
*A. A. Heliel*: A note on*c*-supplemented subgroups of finite groups. Commun. Algebra*42*(2014), 1650–1656.MATHMathSciNetCrossRefGoogle Scholar - [12]
*B. Huppert*: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967. (In German.)MATHGoogle Scholar - [13]
*O. H. Kegel*: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z.*78*(1962), 205–221. (In German.)MATHMathSciNetCrossRefGoogle Scholar - [14]
*S. Li, Z. Shen, J. Liu, X. Liu*: The influence of*ss*-quasinormality of some subgroups on the structure of finite groups. J. Algebra*319*(2008), 4275–4287.MATHMathSciNetCrossRefGoogle Scholar - [15]
*Y. Li, B. Li*: On minimal weakly*s*-supplemented subgroups of finite groups. J. Algebra Appl.*10*(2011), 811–820.MATHMathSciNetCrossRefGoogle Scholar - [16]
*J. Lu, X. Guo, X. Li*: The influence of minimal subgroups on the structure of finite groups. J. Algebra Appl.*12*(2013), Article No. 1250189, 8 pages.Google Scholar - [17]
*P. Schmid*: Subgroups permutable with all Sylow subgroups. J. Algebra*207*(1998), 285–293.MATHMathSciNetCrossRefGoogle Scholar - [18]
*Y. Wang*: Finite groups with some subgroups of Sylow subgroups*c*-supplemented. J. Algebra*224*(2000), 467–478.MATHMathSciNetCrossRefGoogle Scholar

## Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2015