Skip to main content
Log in

Dunkl-Gabor transform and time-frequency concentration

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg’s uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks’ uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form S × B(0, b) in the time-frequency plane ℝd × ℝ̂d. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bonami, B. Demange, P. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19 (2003), 23–55.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. F. E. de Jeu: The Dunkl transform. Invent. Math. 113 (1993), 147–162.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Demange: Uncertainty principles for the ambiguity function. J. Lond. Math. Soc., II. Ser. 72 (2005), 717–730.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. L. Donoho, P. B. Stark: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), 906–931.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. F. Dunkl: Integral kernels with reflection group invariance. Can. J. Math. 43 (1991), 1213–1227.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. F. Dunkl: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311 (1989), 16–183.

    Article  MathSciNet  Google Scholar 

  7. W. G. Faris: Inequalities and uncertainty principles. J. Math. Phys. 19 (1978), 461–466.

    Article  MathSciNet  Google Scholar 

  8. S. Ghobber, P. Jaming: Uncertainty principles for integral orperators. Stud. Math. 220 (2014), 197–220.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Gröchenig: Uncertainty principles for time-frequency representations. Advances in Gabor Analysis (H. G. Feichtinger et al., eds.). Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2003, pp. 11–30.

    Chapter  Google Scholar 

  10. V. Havin, B. Jöricke: The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 28, Springer, Berlin, 1994.

    Book  MATH  Google Scholar 

  11. J. A. Hogan, J. D. Lakey: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling. Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 2005.

    Google Scholar 

  12. L. Lapointe, L. Vinet: Exact operator solution of the Calogero-Sutherland model. Commun. Math. Phys. 178 (1996), 425–452.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Mejjaoli: Practical inversion formulas for the Dunkl-Gabor transform on ℝd. Integral Transforms Spec. Funct. 23 (2012), 875–890.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Mejjaoli, N. Sraieb: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform. Mediterr. J. Math. 5 (2008), 443–466.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. P. Polychronakos: Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69 (1992), 703–705.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Rösler: An uncertainty principle for the Dunkl transform. Bull. Aust. Math. Soc. 59 (1999), 353–360.

    Article  MATH  Google Scholar 

  17. M. Rösler, M. Voit: Markov processes related with Dunkl operators. Adv. Appl. Math. 21 (1998), 575–643.

    Article  MATH  Google Scholar 

  18. N. Shimeno: A note on the uncertainty principle for the Dunkl transform. J. Math. Sci., Tokyo 8 (2001), 33–42.

    MATH  MathSciNet  Google Scholar 

  19. E. Wilczok: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math., J. DMV (electronic) 5 (2000), 201–226.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saifallah Ghobber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobber, S. Dunkl-Gabor transform and time-frequency concentration. Czech Math J 65, 255–270 (2015). https://doi.org/10.1007/s10587-015-0172-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0172-7

Keywords

MSC 2010

Navigation