Advertisement

Czechoslovak Mathematical Journal

, Volume 64, Issue 3, pp 629–640 | Cite as

Point-distinguishing chromatic index of the union of paths

  • Xiang’en Chen
Article

Abstract

Let G be a simple graph. For a general edge coloring of a graph G (i.e., not necessarily a proper edge coloring) and a vertex v of G, denote by S(v) the set (not a multiset) of colors used to color the edges incident to v. For a general edge coloring f of a graph G, if S(u) ≠ S(v) for any two different vertices u and v of G, then we say that f is a point-distinguishing general edge coloring of G. The minimum number of colors required for a point-distinguishing general edge coloring of G, denoted by χ0(G), is called the point-distinguishing chromatic index of G. In this paper, we determine the point-distinguishing chromatic index of the union of paths and propose a conjecture.

Keywords

general edge coloring point-distinguishing general edge coloring point-distinguishing chromatic index 

MSC 2010

05C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. N. Balister: Packing circuits into K n. Comb. Probab. Comput. 10 (2001), 463–499.MATHMathSciNetGoogle Scholar
  2. [2]
    P. N. Balister, B. Bollobás, R. H. Schelp: Vertex distinguishing colorings of graphs with Δ(G) = 2. Discrete Math. 252 (2002), 17–29.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    P. N. Balister, O. M. Riordan, R. H. Schelp: Vertex-distinguishing edge colorings of graphs. J. Graph Theory 42 (2003), 95–109.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak: On the vertex-distinguishing proper edge-colorings of graphs. J. Comb. Theory, Ser. B 75 (1999), 288–301.CrossRefMATHGoogle Scholar
  5. [5]
    A. C. Burris, R. H. Schelp: Vertex-distinguishing proper edge-colorings. J. Graph Theory 26 (1997), 73–82.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    J. Černý, M. Horňák, R. Soták: Observability of a graph. Math. Slovaca 46 (1996), 21–31.MATHMathSciNetGoogle Scholar
  7. [7]
    F. Harary, M. Plantholt: The point-distinguishing chromatic index. Graphs and Application, Proc. 1st Symp. Graph theory, Boulder/Colo. 1982 (F. Harary et al., eds.). A Wiley-Interscience Publication, John Wiley & Sons, New York, 1985, pp. 147–162.Google Scholar
  8. [8]
    M. Horňák, N. Z. Salvi: On the point-distinguishing chromatic index of complete bipartite graphs. Ars Comb. 80 (2006), 75–85.MATHGoogle Scholar
  9. [9]
    M. Horňák, R. Soták: Asymptotic behaviour of the observability of Q n. Discrete Math. 176 (1997), 139–148.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    M. Horňák, R. Soták: Localization of jumps of the point-distinguishing chromatic index of K n,n. Discuss. Math., Graph Theory 17 (1997), 243–251.Google Scholar
  11. [11]
    M. Horňák, R. Soták: Observability of complete multipartite graphs with equipotent parts. Ars Comb. 41 (1995), 289–301.MATHGoogle Scholar
  12. [12]
    M. Horňák, R. Soták: The fifth jump of the point-distinguishing chromatic index of K n,n. Ars Comb. 42 (1996), 233–242.MATHGoogle Scholar
  13. [13]
    N. Z. Salvi: On the point-distinguishing chromatic index of K n,n. Eleventh British Combinatorial Conference (London, 1987), Ars Comb. 25B (1988), 93–104.MATHGoogle Scholar
  14. [14]
    N. Z. Salvi: On the value of the point-distinguishing chromatic index of K n,n. Twelfth British Combinatorial Conference (Norwich, 1989), Ars Comb. 29B (1990), 235–244.MATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2014

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsNorthwest Normal UniversityLanzhou, GansuP.R.China

Personalised recommendations