Czechoslovak Mathematical Journal

, Volume 63, Issue 1, pp 1–38 | Cite as

Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series



We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R.P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.


Henstock-Kurzweil integral regularly convergent multiple series 

MSC 2010

42B05 26A39 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Aubertin, J. J. F. Fournier: Integrability ofMultiple Series. Fourier Analysis: Analytic and Geometric Aspects. Proc. 6th Int. Workshop on Analysis and Its Applications, Univ. of Maine, 1992. Lecture Notes in Pure and Appl. Math., Vol. 157 (W. O. Bray et al., eds.). Marcel Dekker, New York, 1994, pp. 47–75.Google Scholar
  2. [2]
    R. P. Boas: Integrability of trigonometric series I. Duke Math. J. 18 (1951), 787–793.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    R. P. Boas: Integrability Theorems for Trigonometric Transforms. Springer, Berlin-New York, 1967.MATHCrossRefGoogle Scholar
  4. [4]
    B. Bongiorno: The Henstock-Kurzweil integral. Handbook of Measure Theory, Vol. I, II. North-Holland, Amsterdam, 2002, pp. 587–615.CrossRefGoogle Scholar
  5. [5]
    T.-S. Chew, B. Van-Brunt, G. C. Wake: First-order partial differential equations and Henstock-Kurzweil integrals. Differ. Integral Equ. 10 (1997), 947–960.MathSciNetMATHGoogle Scholar
  6. [6]
    C.-A. Faure: A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549–562.MathSciNetMATHGoogle Scholar
  7. [7]
    C.-A. Faure, J. Mawhin: Integration over unbounded multidimensional intervals. J. Math. Anal. Appl. 205 (1997), 65–77.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    G. H. Hardy, J. E. Littlewood: Solution of the Cesàro summability problem for power-series and Fourier series. Math. Zs. 19 (1923), 67–96.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    R. Henstock: Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402–418.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R. Henstock, P. Muldowney, V. A. Skvortsov: Partitioning infinite-dimensional spaces for generalized Riemann integration. Bull. Lond. Math. Soc. 38 (2006), 795–803.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    P. Heywood: Integrability theorems for trigonometric series. Q. J. Math., Oxford, II. Ser. 13 (1962), 172–180.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    K. Karták: K theorii vícerozměrného integrálu. Čas. Mat. 80 (1955), 400–414. (In Czech.)MATHGoogle Scholar
  13. [13]
    J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418–449.MathSciNetGoogle Scholar
  14. [14]
    P. Y. Lee, R. Výborný: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge, 2000.MATHGoogle Scholar
  15. [15]
    T.-Y. Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. Lond. Math. Soc., III. Ser 87 (2003), 677–700.MATHCrossRefGoogle Scholar
  16. [16]
    T.-Y. Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677–692.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    T.-Y. Lee: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Camb. Philos. Soc. 138 (2005), 487–492.MATHCrossRefGoogle Scholar
  18. [18]
    T.-Y. Lee: Proof of two conjectures of Móricz on double trigonometric series. J. Math. Anal. Appl. 340 (2008), 53–63.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    T.-Y. Lee: Some convergence theorems for Lebesgue integrals. Analysis, München 28 (2008), 263–268.MATHCrossRefGoogle Scholar
  20. [20]
    T.-Y. Lee: A measure-theoretic characterization of the Henstock-Kurzweil integral revisited. Czech. Math. J. 58 (2008), 1221–1231.MATHCrossRefGoogle Scholar
  21. [21]
    T.-Y. Lee: A multidimensional integration by parts formula for the Henstock-Kurzweil integral. Math. Bohem. 133 (2008), 63–74.MathSciNetMATHGoogle Scholar
  22. [22]
    T.-Y. Lee: Bounded linear functionals on the space of Henstock-Kurzweil integrable functions. Czech. Math. J. 59 (2009), 1005–1017.MATHCrossRefGoogle Scholar
  23. [23]
    T.-Y. Lee: On a result of Hardy and Littlewood concerning Fourier series. Anal. Math. 36 (2010), 219–223.MathSciNetCrossRefGoogle Scholar
  24. [24]
    T.-Y. Lee: Some integrability theorems for multiple trigonometric series. Math. Bohem. 136 (2011), 269–286.MathSciNetMATHGoogle Scholar
  25. [25]
    P. Mikusiński, K. Ostaszewski: The space of Henstock integrable functions II. New Integrals. Lect. Notes Math. Vol. 1419 (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney, W. F. Pfeffer, eds.). Springer, Berlin-Heideberg-New York, 1990, pp. 136–149.Google Scholar
  26. [26]
    F. Móricz: Some remarks on the notion of regular convergence of multiple series. Acta Math. Hung. 41 (1983), 161–168.MATHCrossRefGoogle Scholar
  27. [27]
    F. Móricz: Integrability of double lacunary sine series. Proc. Am. Math. Soc. 110 (1990), 355–364.MATHGoogle Scholar
  28. [28]
    F. Móricz: On the integrability of double cosine and sine series I. J. Math. Anal. Appl. 154 (1991), 452–465.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    F. Móricz: On the integrability of double cosine and sine series II. J. Math. Anal. Appl. 154 (1991), 466–483.MATHCrossRefGoogle Scholar
  30. [30]
    F. Móricz: Integrability of double cosine-sine series in the sense of improper Riemann integral. J. Math. Anal. Appl. 165 (1992), 419–437.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    K. Ostaszewski: Henstock Integration in the Plane. Mem. Am. Math. Soc. Vol. 63, 1986.Google Scholar
  32. [32]
    S. Saks: Theory of the Integral. Second revised edition. G. E. Stechert & Co., New York, 1937.Google Scholar
  33. [33]
    E. Talvila: Henstock-Kurzweil Fourier transforms. Ill. J. Math. 46 (2002), 1207–1226.MathSciNetMATHGoogle Scholar
  34. [34]
    E. Talvila: Estimates of Henstock-Kurzweil Poisson integrals. Can. Math. Bull. 48 (2005), 133–146.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    E. Talvila: Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral. Czech. Math. J. 55 (2005), 933–940.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    W. H. Young: On multiple Fourier series. Lond. M. S. Proc. 11 (1912), 133–184.MATHCrossRefGoogle Scholar
  37. [37]
    A. Zygmund: Trigonometric Series. Volumes I, II and combined. Third edition. Cambridge University Press, Cambridge, 2002.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2013

Authors and Affiliations

  1. 1.Mathematics and Mathematics Education, National Institute of EducationNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations