Czechoslovak Mathematical Journal

, Volume 62, Issue 1, pp 39–57 | Cite as

Closed-form expression for Hankel determinants of the Narayana polynomials

  • Marko D. Petković
  • Paul Barry
  • Predrag Rajković


We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials.


Narayana numbers Hankel transform orthogonal polynomials 

MSC 2010

11Y55 34A25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Barry: On integer-sequences-based constructions of generalized Pascal triangles. J. Integer Seq. 59 (2006). Article 06.2.4. Electronic only.Google Scholar
  2. [2]
    P. Barry, A. Hennessy: Notes on a family of Riordan arrays and associated integer Hankel transforms. J. Integer Seq. 12 (2009). Article ID 09.5.3. Electronic only.Google Scholar
  3. [3]
    P. Brändén: q-Narayana numbers and the flag h-vector of J(2×n). Discrete Math. 281 (2004), 67–81.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. A. Brualdi, S. Kirkland: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers. J. Comb. Theory Ser. B 94 (2005), 334–351.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Chamberland, C. French: Generalized Catalan numbers and generalized Hankel transformations. J. Integer Seq. 10 (2007).Google Scholar
  6. [6]
    T. S. Chihara: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.MATHGoogle Scholar
  7. [7]
    A. Cvetković, P. M. Rajković, M. Ivković: Catalan Numbers, the Hankel transform, and Fibonacci numbers. J. Integer Seq. 5 (2002).Google Scholar
  8. [8]
    O. Eğecioğlu, T. Redmond, C. Ryavec: Almost product evaluation of Hankel determinants. Electron. J. Comb. 15,#R6 (2008).Google Scholar
  9. [9]
    O. Eğecioğlu, T. Redmond, C. Ryavec: A multilinear operator for almost product evaluation of Hankel determinants. J. Comb. Theory Ser. A 117 (2010), 77–103.MATHCrossRefGoogle Scholar
  10. [10]
    M. Garcia Armas, B.A. Sethuraman: A note on the Hankel transform of the central binomial coefficients. J. Integer Seq. 11 (2008). Article ID 08.5.8.Google Scholar
  11. [11]
    W. Gautschi: Orthogonal polynomials: Applications and computation. In: Acta Numerica Vol. 5 (A. Iserles, ed.). Cambridge University Press, Cambridge, 1996, pp. 45–119.Google Scholar
  12. [12]
    W. Gautschi: Orthogonal Polynomials. Computation and Approximation. Oxford University Press, Oxford, 2004.MATHGoogle Scholar
  13. [13]
    M. E. H. Ismail: Determinants with orthogonal polynomial entries. J. Comput. Appl. Math. 178 (2005), 255–266.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. Junod: Hankel determinants and orthogonal polynomials. Expo. Math. 21 (2003), 63–74.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    C. Krattenthaler: Advanced determinant calculus: A complement. Linear Algebra Appl. 411 (2005), 68–166.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    W. Lang: On sums of powers of zeros of polynomials. J. Comput. Appl. Math. 89 (1998), 237–256.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. W. Layman: The Hankel transform and some of its properties. J. Integer Seq. 4 (2001). Article 01.1.5. Electronic only.Google Scholar
  18. [18]
    L. L. Liu, Y. Wang: A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 38 (2007), 542–560.MATHCrossRefGoogle Scholar
  19. [19]
    P. A. MacMahon: Combinatorial Analysis, Vols. 1 and 2. Cambridge University Press, Cambridge, 1915, 1916, reprinted by Chelsea, 1960.Google Scholar
  20. [20]
    T. Mansour, Y. Sun: Identities involving Narayana polynomials and Catalan numbers. Discrete Math. 309 (2009), 4079–4088.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    T. V. Narayana: Sur les treillis formés par les partitions d’un entier et leurs applications à la théorie des probabilités. C. R. Acad. Sci. 240 (1955), 1188–1189. (In French.)MATHGoogle Scholar
  22. [22]
    P. M. Rajković, M.D. Petković, P. Barry: The Hankel transform of the sum of consecutive generalized Catalan numbers. Integral Transforms Spec. Funct. 18 (2007), 285–296.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences; available at
  24. [24]
    R. A. Sulanke: Counting lattice paths by Narayana polynomials. Electron. J. Comb. 7 (2000). #R40.Google Scholar
  25. [25]
    R. A. Sulanke: The Narayana distribution. J. Statist. Plann. Inference 101 (2002), 311–326.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    G. Xin: Proof of the Somos-4 Hankel determinants conjecture. Adv. Appl. Math. 42 (2009), 152–156.MATHCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2012

Authors and Affiliations

  • Marko D. Petković
    • 1
  • Paul Barry
    • 2
  • Predrag Rajković
    • 3
  1. 1.Faculty of Sciences and MathematicsUniversity of NišNišSerbia
  2. 2.School of ScienceWaterford Institute of TechnologyWaterfordIreland
  3. 3.Faculty of Mechanical EngineeringUniversity of NišNišSerbia

Personalised recommendations