Czechoslovak Mathematical Journal

, Volume 61, Issue 4, pp 901–908 | Cite as

Some characterizations of weakly compact operator on Banach lattices

  • Belmesnaoui Aqzzouz
  • Khalid Bouras


We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences.


weakly compact operator order continuous norm KB-space 

MSC 2010

46A40 46B40 46B42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ch. D. Aliprantis, O. Burkinshaw: Positive Operators. Reprint of the 1985 original. Springer, Berlin, 2006.MATHGoogle Scholar
  2. [2]
    B. Aqzzouz, R. Nouira, L. Zraoula: About positive Dunford-Pettis operators on Banach lattices. J. Math. Anal. Appl. 324 (2006), 49–59.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    B. Aqzzouz, A. Elbour: On the weak compactness of b-weakly compact operators. Positivity 14 (2010), 75–81.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    B. Aqzzouz, A. Elbour, J. Hmichane: Some properties of the class of positive Dunford-Pettis operators. J. Math. Anal. Appl. 354 (2009), 295–300.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    H. H. Schaefer: Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wissenschaften 215, Springer-Verlag, Berlin and New York, 1974.MATHGoogle Scholar
  6. [6]
    P. Meyer-Nieberg: Banach lattices. Universitext. Springer-Verlag, Berlin, 1991.MATHCrossRefGoogle Scholar
  7. [7]
    A. W. Wickstead: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Camb. Philos. Soc. 120 (1996), 175–179.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    W. Wnuk: Some characterizations of Banach lattices with the Schur property. Congress on Functional Analysis (Madrid, 1988). Rev. Mat. Univ. Complutense Madr. 2, No. Suppl., (1989), 217–224.Google Scholar
  9. [9]
    A. C. Zaanen: Riesz Spaces II. North-Holland Mathematical Library 30, Amsterdam-New York-Oxford, North-Holland Publishing Company, 1983.MATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2011

Authors and Affiliations

  1. 1.Département d’Economie, Faculté des Sciences Economiques, Juridiques et SocialesUniversité Mohammed V-SouissiSalaAljadidaMorocco
  2. 2.Département de Mathématiques, Faculté des SciencesUniversité Ibn TofailKénitraMorocco

Personalised recommendations