Advertisement

A class of tight framelet packets

  • Da-Yong Lu
  • Qi-Bin Fan
Article

Absract

This paper obtains a class of tight framelet packets on L 2(ℝ d ) from the extension principles and constructs the relationships between the basic framelet packets and the associated filters.

Keywords

wavelet frames framelet packets framelets extension principles 

MSC 2010

42C15 42C40 

References

  1. [1]
    B. Behera: Multiwavelet packets and frame packets of L 2(ℝd). Proc. Ind. Acad. Sci., Math. Sci. 111 (2001), 439–463.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J. J. Benedetto, O.M. Treiber: Wavelet frames: multiresolution analysis and extension principles. In: L. Debnath, ed., Wavelet Transforms and Time-Frequency Signal Analysis, Birkhäuser, 2001, pp. 3–36.Google Scholar
  3. [3]
    C. Boor, R.A. DeVore, A. Ron: On the construction of multivariate (pre) wavelets. Construct. Approx. 9 (1993), 123–166.MATHCrossRefGoogle Scholar
  4. [4]
    D. Chen: On the splitting trick and wavelet frame packets. SIAM J. Math. Anal. 4 (2000), 726–739.CrossRefGoogle Scholar
  5. [5]
    Q. J. Chen, Z.X. Cheng: A study on compactly supported orthogonal vector-valued wavelets and wavelet packets. Chaos, Solitons and Fractals 31 (2007), 1024–1034.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    O. Christensen: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2003.MATHGoogle Scholar
  7. [7]
    C. R. Chui, C. Li: Non-orthogonal wavelet packets. SIAM J. Math. Anal. 24 (1993), 712–738.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A. Cohen, I. Daubechies: On the instability of arbitrary biorthogonal wavelet packets. SIAM J. Math. Anal. 24 (1993), 1340–1354.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    R. R. Coifman, Y. Meyer, M. V. Wickerhauser: Size properties of wavelet packets. In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston, 1992, pp. 453–470.Google Scholar
  10. [10]
    R. R. Coifman, Y. Meyer, M. V. Wickerhauser: Wavelet analysis and signal processing. In: M. B. Ruskai et al., eds., Wavelets and Their Applications. Jones and Bartlett, Boston, 1992, pp. 153–178.Google Scholar
  11. [11]
    I. Daubechies, B. Han: Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20 (2004), 325–352.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    I. Daubechies, B. Han, A. Ron, Z. Shen: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 1 (2003), 1–46.MathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Han: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155 (2003), 43–67.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    B. Han: Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    B. Han: On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4 (1997), 380–413.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    B. Han, Q. Mo: Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18 (2005), 67–93.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R. Long, W. Chen: Wavelet basis packets and wavelet frame packets. J. Fourier Anal. Appl. 3 (1997), 239–256.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. Ron, Z. Shen: Affine systems in L 2(ℝd): the analysis of the analysis operator. J. Functional Anal. Appl. 148 (1997), 408–447.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    A. Ron, Z. Shen: Compactly supported tight affine spline frames in L 2(ℝd). Math. Comput. 67 (1998), 191–207.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    I. W. Selesnick, A. F. Abdelnour: Symmetric wavelet tight frames with two generators. Appl. Comput. Harmon. Anal. 17 (2004), 211–225.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Z. Shen: Nontensor product wavelet packets in L 2(ℝs). SIAM J. Math. Anal. 26 (1995), 1061–1074.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2011

Authors and Affiliations

  1. 1.WuhanP.R.China
  2. 2.School of Mathematics and StatisticsWuhan UniversityWuhanP.R.China

Personalised recommendations