Advertisement

Affine connections on almost para-cosymplectic manifolds

  • Adara M. Blaga
Article

Abstract

Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.

Keywords

para-cosymplectic manifold harmonic product structure 

MSC 2010

53C15 58A10 70G45 

References

  1. [1]
    C. L. Bejan, M. Ferrara: Para-Kähler manifolds of quasi-constant P-sectional curvature. Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, Serbia and Montenegro, June 26–July 2, 2005 (N. Bokan, ed.). Cigoja Publishing Company, 2006, pp. 29–36.Google Scholar
  2. [2]
    P. Dacko, Z. Olszak: On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys. 57 (2007), 561–570.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    S. Erdem: On almost (para)contact (hyperbolic) metric manifolds and harmonicity of (φ,φ′)-holomorphic maps between them. Houston J. Math. 28 (2002), 21–45.MathSciNetMATHGoogle Scholar
  4. [4]
    S. Funabashi, H. S. Kim, Y.-M. Kim, J. S. Pak: Traceless component of the conformal curvature tensor in Kähler manifold. Czech. Math. J. 56 (2006), 857–874.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    W. Jianming: Harmonic complex structures. Chin. Ann. Math., Ser. A 30 (2009), 761–764; arXiv: 1007.4392v1/math.DG (2010).MATHGoogle Scholar
  6. [6]
    Z. Olszak: On almost cosymplectic manifolds. Kodai Math. J. 4 (1981), 239–250.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. Prvanović: Holomorphically projective transformations in a locally product space. Math. Balk. 1 (1971), 195–213.MATHGoogle Scholar
  8. [8]
    L. Schäfer: tt*-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24 (2006), 60–89.MATHCrossRefGoogle Scholar
  9. [9]
    Y. L. Xin: Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and Their Applications 23. Birkhäuser, Boston, 1996.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2011

Authors and Affiliations

  1. 1.TimişoaraRomânia
  2. 2.Department of Mathematics and Computer ScienceWest University of TimişoaraTimişoaraRomânia

Personalised recommendations