Czechoslovak Mathematical Journal

, Volume 60, Issue 1, pp 31–43 | Cite as

Lambert multipliers between L p spaces

  • M. R. Jabbarzadeh
  • S. Khalil Sarbaz


In this paper Lambert multipliers acting between L p spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.


conditional expectation multipliers multiplication operators Fredholm operator 

MSC 2010

47B20 47B38 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Campbell and J. Jamison: On some classes of weighted composition operators. Glasg. Math. J. 32 (1990), 87–94.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J.B. Conway: A course in Functional Analysis, 2nd ed. Springer-Verlag, New York, 1990.MATHGoogle Scholar
  3. [3]
    B. de Pagter and W. J. Ricker: Bicommutants of algebras of multiplication operators. Proc. London Math. Soc. 72 (1996), 458–480.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Herron: Weighted conditional expectation operators on Lp spaces. UNC Charlotte Doctoral Dissertation.Google Scholar
  5. [5]
    S. Kantorovitz: Introduction to Modern Analysis. Oxford University Press, Oxford, 2003.MATHGoogle Scholar
  6. [6]
    A. Lambert and T.G. Lucas: Nagata’s principle of idealization in relation to module homomorphisms and conditional expectations. Kyungpook Math. J. 40 (2000), 327–337.MATHMathSciNetGoogle Scholar
  7. [7]
    A. Lambert: Lp multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. 104 (1998), 147–153.Google Scholar
  8. [8]
    A. Lambert and B.M. Weinstock: A class of operator algebras induced by probabilistic conditional expectations. Mich. Math. J. 40 (1993), 359–376.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Lambert: Hyponormal composition operators. Bull. London Math. Soc. 18 (1986), 395–400.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M.M. Rao: Conditional Measures and Applications. Marcel Dekker, New York, 1993.MATHGoogle Scholar
  11. [11]
    H. Takagi: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 (1993), 267–276.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Takagi and K. Yokouchi: Multiplication and composition operators between two Lp-spaces. Contemp. Math. 232 (1999), 321–338.MathSciNetGoogle Scholar
  13. [13]
    A.C. Zaanen: Integration, 2nd ed. North-Holland, Amsterdam, 1967.MATHGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2010

Authors and Affiliations

  1. 1.Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations