Czechoslovak Mathematical Journal

, Volume 59, Issue 2, pp 371–379 | Cite as

Boundary functions on a bounded balanced domain

  • Piotr Kot


We solve the following Dirichlet problem on the bounded balanced domain with some additional properties: For p > 0 and a positive lower semi-continuous function u on ∂Ω with u(z) = uz) for |λ| = 1, z ∈ ∂Ω we construct a holomorphic function f\( \mathbb{O} \)(Ω) such that \( u(z) = \int_{\mathbb{D}z} {|f|^p d\mathfrak{L}_{\mathbb{D}z}^2 } \) for z ∈ ∂Ω, where \( \mathbb{D} \)= {λ ∈ ℂ: |λ| < 1}.


boundary behavior of holomorphic functions exceptional sets boundary functions Dirichlet problem Radon inversion problem 

MSC 2000



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Globevnik: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195–203.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    P. Jakóbczak: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115–128.MATHGoogle Scholar
  3. [3]
    P. Jakóbczak: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175–181.MATHCrossRefGoogle Scholar
  4. [4]
    P. Jakóbczak: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150–159.MATHGoogle Scholar
  5. [5]
    P. Kot: Description of simple exceptional sets in the unit ball. Czech. Math. J. 54 (2004), 55–63.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Kot: Boundary functions in L 2 H(\( \mathbb{B}^n \)). Czech. Math. J. 57 (2007), 29–47.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Kot: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135 (2007), 3895–3903.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Kot: Bounded holomorphic functions with given maximum modulus on all circles. Proc. Amer. Math. Soc 137 (2009), 179–187.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2009

Authors and Affiliations

  1. 1.Instytut MatematykiPolitechnika KrakowskaKrakowPoland

Personalised recommendations