Czechoslovak Mathematical Journal

, Volume 58, Issue 4, pp 1185–1193 | Cite as

Noncirculant Toeplitz matrices all of whose powers are Toeplitz

  • Kent Griffin
  • Jeffrey L. Stuart
  • Michael J. Tsatsomeros


Let a, b and c be fixed complex numbers. Let M n (a, b, c) be the n × n Toeplitz matrix all of whose entries above the diagonal are a, all of whose entries below the diagonal are b, and all of whose entries on the diagonal are c. For 1 ⩽ kn, each k × k principal minor of M n (a, b, c) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of M n (a, b, c). We also show that all complex polynomials in M n (a, b, c) are Toeplitz matrices. In particular, the inverse of M n (a, b, c) is a Toeplitz matrix when it exists.


Toeplitz matrix Toeplitz inverse Toeplitz powers principal minor Fibonacci sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Griffin: Solving the principal minor assignment problem and related computations. PhD. Dissertation. Washington State University, Washington, 2006.Google Scholar
  2. [2]
    K. Griffin, M. J. Tsatsomeros: Principal minors, Part I: A method for computing all the principal minors of a matrix. Linear Algebra Appl. 419 (2006), 107–124.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    K. Griffin, M. J. Tsatsomeros: Principal minors, Part II: The principal minor assignment problem. Linear Algebra Appl. 419 (2006), 125–171.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. M. Huang, R. E. Cline: Inversion of persymmetric matrices having Toeplitz inverses. J. Assoc. Comput. Mach. 19 (1972), 437–444.MATHMathSciNetGoogle Scholar
  5. [5]
    T. Shalom: On algebras of Toeplitz matrices. Linear Algebra Appl. 96 (1987), 211–226.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  • Kent Griffin
    • 1
  • Jeffrey L. Stuart
    • 2
  • Michael J. Tsatsomeros
    • 3
  1. 1.Santa MonicaUSA
  2. 2.Mathematics DepartmentPacific Lutheran UniversityTacomaUSA
  3. 3.Mathematics DepartmentWashington State UniversityPullmanUSA

Personalised recommendations