Czechoslovak Mathematical Journal

, Volume 58, Issue 4, pp 1059–1068 | Cite as

Barbilian’s metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics

  • Wladimir G. Boskoff
  • Bogdan D. Suceavă


In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian’s metrization procedure can be relaxed. Then, we prove that Barbilian’s metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.


Riemannian metrics Finslerian metrics Lagrangian metrics Lagrange generalized metrics Barbilian’s metrization procedure Apollonian metric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Anastasiei: Certain generalizations of Finsler metrics. Contemp. Math. 196 (1996), 161–169.MathSciNetGoogle Scholar
  2. [2]
    D. Barbilian: Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Bereiche. Časopis Mathematiky a Fysiky 64 (1934–35), 182–183.Google Scholar
  3. [3]
    D. Barbilian: Asupra unui principiu de metrizare. Stud. Cercet. Mat. 10 (1959), 68–116.Google Scholar
  4. [4]
    D. Barbilian: Fundamentele metricilor abstracte ale lui Poincaré şi Carathéodory ca aplicaţie a unui principiu general de metrizare. Stud. Cercet. Mat. 10 (1959), 273–306.MathSciNetGoogle Scholar
  5. [5]
    D. Barbilian: J-metricile naturale finsleriene. Stud. Cercet. Mat. 11 (1960), 7–44.MATHMathSciNetGoogle Scholar
  6. [6]
    D. Barbilian and N. Radu: J-metricile naturale finsleriene şi funcţia de reprezentare a lui Riemann. Stud. Cercet. Mat. 12 (1962), 21–36.MathSciNetGoogle Scholar
  7. [7]
    A. F. Beardon: The Apollonian metric of a domain in ℝn, in Quasiconformal mappings and analysis. Springer-Verlag, 1998, pp. 91–108.Google Scholar
  8. [8]
    W. G. Boskoff: S-Riemannian manifolds and Barbilian spaces. Stud. Cercet. Mat. 46 (1994), 317–325.MATHMathSciNetGoogle Scholar
  9. [9]
    W. G. Boskoff: Finslerian and induced Riemannian structures for natural Barbilian spaces. Stud. Cercet. Mat. 47 (1995), 9–16.MATHMathSciNetGoogle Scholar
  10. [10]
    W. G. Boskoff: The connection between Barbilian and Hadamard spaces. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr. 39 (1996), 105–111.MATHGoogle Scholar
  11. [11]
    W. G. Boskoff: Hyperbolic geometry and Barbilian spaces, Istituto per la Ricerca di Base. Hardronic Press, 1996.Google Scholar
  12. [12]
    W. G. Boskoff: A generalized Lagrange space induced by the Barbilian distance. Stud. Cercet. Mat. 50 (1998), 125–129.MATHMathSciNetGoogle Scholar
  13. [13]
    W. G. Boskoff and P. Horja: The characterization of some spectral Barbilian spaces using the Tzitzeica construction. Stud. Cercet. Mat. 46 (1994), 503–514.MATHMathSciNetGoogle Scholar
  14. [14]
    W. G. Boskoff and B. D. Suceavă: Barbilian spaces: the history of a geometric idea. Historia Mathematica 34 (2007), 221–224.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    W. G. Boskoff and B. D. Suceavă: The history of Barbilian metrization procedure and Barbilian spaces. Mem. Secţ. Ştiinţ. Acad. Română Ser. IV 28 (2005), 7–16.Google Scholar
  16. [16]
    W. G. Boskoff, M. G. Ciucă and B. D. Suceavă: Distances induced by Barbilian’s metrization procedure. Houston J. Math. 33 (2007), 709–717.MATHMathSciNetGoogle Scholar
  17. [17]
    S. S. Chern, W. H. Chen and K. S. Lam: Lectures on Differential Geometry. World Scientific, 1999.Google Scholar
  18. [18]
    F. W. Gehring and K. Hag: The Apollonian metric and quasiconformal mappings. Contemp. Math. 256 (2000), 143–163.MathSciNetGoogle Scholar
  19. [19]
    P. A. Hästö: The Appollonian metric: uniformity and quasiconvexity. Ann. Acad. Sci. Fennicae 28 (2003), 385–414.MATHGoogle Scholar
  20. [20]
    P. A. Hästö: The Apollonian metric: limits of the approximation and bilipschitz properties. Abstr. Appl. Anal. (2003), 1141–1158.Google Scholar
  21. [21]
    P. A. Hästö: The Apollonian metric: quasi-isotropy and Seittenranta’s metric. Comput. Methods Funct. Theory 4 (2004), 249–273.MATHMathSciNetGoogle Scholar
  22. [22]
    P. A. Hästö: The Apollonian inner metric. Comm. Anal. Geom. 12 (2004), 927–947.MATHMathSciNetGoogle Scholar
  23. [23]
    P. A. Hästö and H. Lindén: Isometries of the half-Apollonian metric. Complex Var. Theory Appl. 49 (2004), 405–415.MATHMathSciNetGoogle Scholar
  24. [24]
    Z. Ibragimov: On the Apollonian metric of domains in Open image in new window. Complex Var. Theory Appl. 48 (2003), 837–855.MATHMathSciNetGoogle Scholar
  25. [25]
    Z. Ibragimov: Conformality of the Apollonian metric. Comput. Methods Funct. Theory 3 (2003), 397–411.MATHMathSciNetGoogle Scholar
  26. [26]
    P. J. Kelly: Barbilian geometry and the Poincaré model. Amer. Math. Monthly 61 (1954), 311–319.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Miron, M. Anastasiei and I. Bucătaru: The Geometry of Lagrange Spaces Handbook of Finsler geometry. Kluwer Acad. Publ., Dordrecht, 2003, pp. 969–1122.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceOvidius UniversityConstanţaRomania
  2. 2.Department of MathematicsCalifornia State UniversityFullertonUSA

Personalised recommendations