Advertisement

Czechoslovak Mathematical Journal

, Volume 57, Issue 1, pp 419–434 | Cite as

Some Kurzweil-Henstock-type integrals and the wide Denjoy integral

  • Piotr Sworowski
Article
  • 39 Downloads

Abstract

Kurzweil-Henstock integrals related to local systems and the wide Denjoy integral are discussed in the frame of their comparability and compatibility.

Keywords

wide Denjoy integral Kurzweil-Henstock integral Kubota integral local system porosity intersection conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On dyadic integrals and some other integrals associated with local systems. Journal of Mathematical Analysis and Applications 271 (2002), 506–524.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B. Bongiorno, L. Di Piazza and V. A. Skvortsov: The Ward property for a -adic basis and the -adic integral. Journal of Mathematical Analysis and Applications 285 (2003), 578–592.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Bongiorno, L. Di Piazza and V. A. Skvortsov: Variational measures related to local systems and the Ward property of -adic path bases. Czech. Math. J. 56 (2006), 559–578.CrossRefMATHGoogle Scholar
  4. [4]
    A. M. Bruckner: Differentiation of Real Functions. Lecture Notes in Mathematics 659, Springer-Verlag, 1978.Google Scholar
  5. [5]
    V. Ene: On Borel measurable functions that are VBG and N. Real Anal. Exch. 22 (1996/97), 688–695.MATHMathSciNetGoogle Scholar
  6. [6]
    V. Ene: Hake-Alexandroff-Looman type theorems. Real Anal. Exch. 23 (1997/98), 491–524.MATHMathSciNetGoogle Scholar
  7. [7]
    V. Ene: A study of some general integrals that contains the wide Denjoy integral. Real Anal. Exch. 26 (2000/01), 51–100.MathSciNetGoogle Scholar
  8. [8]
    T. Filipczak: Intersection conditions for some density and -density local systems. Real Anal. Exch. 15 (1989/90), 170–192.MathSciNetGoogle Scholar
  9. [9]
    R. A. Gordon: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1990/91), 154–168.Google Scholar
  10. [10]
    R. A. Gordon: Some comments on an approximately continuous Khintchine integral. Real Anal. Exch. 20 (1994/95), 831–841.Google Scholar
  11. [11]
    Y. Kubota: On the approximately continuous Denjoy integral. Tôhoku Mathematical Journal 15 (1963), 253–264.MATHMathSciNetGoogle Scholar
  12. [12]
    Y. Kubota: An integral of the Denjoy type. Proceedings of the Japan Academy 40 (1964), 713–717.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    C. M. Lee: An analogue of the theorem of Hake-Alexandroff-Looman. Fundamenta Mathematicae 100 (1978), 69–74.MATHMathSciNetGoogle Scholar
  14. [14]
    C. M. Lee: On Baire one Darboux functions with Lusin’s condition N. Real Anal. Exch. 7 (1981/82), 61–64.Google Scholar
  15. [15]
    S. P. Lu: Notes on the approximately continuous Henstock integral. Real Anal. Exch. 22 (1996/97), 377–381.MATHGoogle Scholar
  16. [16]
    W. Poreda, E. Wagner-Bojakowska and W. Wilczyński: A category analogue of the density topology. Fundamenta Mathematicae 125 (1985), 167–173.MATHMathSciNetGoogle Scholar
  17. [17]
    J. Ridder: Über approximativ stetige Denjoy-Integrale. Fundamenta Mathematicae 21 (1933), 136–162.Google Scholar
  18. [18]
    S. Saks: Theory of Integral. New York, 1937.Google Scholar
  19. [19]
    D. N. Sarkhel: A wide constructive integral. Mathematica Japonica 32 (1987), 295–309.MATHMathSciNetGoogle Scholar
  20. [20]
    D. N. Sarkhel and A. K. De: The proximally continuous integrals. Journal of the Australian Mathematical Society (Series A) 31 (1981), 26–45.MATHMathSciNetGoogle Scholar
  21. [21]
    D. N. Sarkhel and A. B. Kar: [PVB] functions and integration. Journal of the Australian Mathematical Society (Series A) 36 (1984), 335–353.MATHMathSciNetGoogle Scholar
  22. [22]
    V. A. Skvortsov: Some properties of dyadic primitives. In: New Integrals, Lecture Notes in Mathematics 1419, Springer-Verlag (1988), 167–179.Google Scholar
  23. [23]
    V. Skvortsov and P. Sworowski: Characterization of approximate and -approximate Kurzweil-Henstock integrals. Real Analysis Conference Łeba (2001), 121–129.Google Scholar
  24. [24]
    P. Sworowski: An answer to some questions of Ene. Real Anal. Exch. 30 (2004/05), 183–192.MathSciNetGoogle Scholar
  25. [25]
    B. S. Thomson: Real Functions. Lecture Notes in Mathematics 1170, Springer-Verlag, 1985.Google Scholar
  26. [26]
    B. S. Thomson: Derivation bases on the real line. Real Anal. Exch. 8 (1982/83), 67–207, 278–442.MathSciNetGoogle Scholar
  27. [27]
    G. P. Tolstov: Sur l’intégrale de Perron. Matematicheskij Sbornik 5 (1939), 647–659.MATHGoogle Scholar
  28. [28]
    C. Wang and C. S. Ding: An integral involving Thomson’s local systems. Real Anal. Exch. 19 (1993/94), 248–253.MathSciNetGoogle Scholar
  29. [29]
    L. Zajíček: Porosity and σ-porosity. Real Anal. Exch. 13 (1987/88), 314–350.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2007

Authors and Affiliations

  • Piotr Sworowski
    • 1
  1. 1.Instytut MatematykiCasimirus the Great UniversityBydgoszczPoland

Personalised recommendations