Advertisement

Czechoslovak Mathematical Journal

, Volume 57, Issue 1, pp 135–152 | Cite as

Existence and iteration of positive solutions for a singular two-point boundary value problem with a p-Laplacian operator

  • De-Xiang Ma
  • Wei-Gao Ge
  • Zhan-Ji Gui
Article
  • 29 Downloads

Abstract

In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation (ϕ p (u′))′+q(t)f(u) = 0, 0 < t < 1, where ϕ p (s):= |s| p−2 s, p > 1, subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient q(t) may be singular at t = 0; 1.

Keywords

iteration symmetric and monotone positive solution nonlinear boundary value problem p-Laplacian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Wang: The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Am. Math. Soc. 125 (1997), 2275–2283.MATHCrossRefGoogle Scholar
  2. [2]
    L. Kong, J. Wang: Multiple positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 42 (2000), 1327–1333.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Guo, V. Lakshmikantham: Nonlinear Problems in Abstract. Cones. Academic Press, Boston, 1988.MATHGoogle Scholar
  4. [4]
    X. He, W. Ge: Twin positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 56 (2004), 975–984.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. I. Avery, C. J. Chyan, and J. Henderson: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations. Comput. Math. Appl. 42 (2001), 695–704.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. P. Agarwal, H. Lü and D. O’Regan: Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal. Appl. 266 (2002), 383–340.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Y. Guo, W. Ge: Three positive solutions for the one-dimensional p-Laplacian. Nonlinear Analysis 286 (2003), 491–508.MATHMathSciNetGoogle Scholar
  8. [8]
    H. Amann: Fixed point equations and nonlinear eigenvalue problems in order Banach spaces. SIAM Rev. 18 (1976), 620–709.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2007

Authors and Affiliations

  • De-Xiang Ma
    • 1
  • Wei-Gao Ge
    • 2
  • Zhan-Ji Gui
    • 3
  1. 1.Department of MathematicsNorth China Electric Power UniversityBeijingP. R. China
  2. 2.Department of MathematicsBeijing Institute of TechnologyBeijingP. R. China
  3. 3.Department of Computer ScienceHainan Normal UniversityHaikou, HainanP. R. China

Personalised recommendations